Article contents
Mixed Convection Heat Transfer in an Anisotropic Porous Medium with Oblique Principal Axes
Published online by Cambridge University Press: 05 June 2014
Abstract
In this paper, a numerical study is carried out to investigate the mixed convection flow and heat transfer in a parallel-plate channel with an anisotropic permeable porous medium. The principal axis of the porous medium is orientated in a direction which is oblique to the gravity vector. Both clear (Newtonian) fluid dissipation and Darcy viscous dissipation are considered in the heat transport equation. In this model, the temperature dependent fluid properties are considered and their influence on the flow and heat transfer characteristics is brought out. The governing non-linear equations (in non-dimensional form) are solved numerically by a second order finite difference scheme. The directional permeability ratio A1 is defined to combine the effects of the permeability ratio parameter K* = (K1 / K2) and the orientation angle Φ1. The effects of the anisotropic permeability ratio, the orientation angle of the principal axis, and the temperature dependent variable properties on the mixed convection flow and heat transfer are investigated. It is demonstrated that both the anisotropic permeability of the porous medium and the variable transport properties have strong effects on the flow and heat transfer characteristics.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2014
References
- 9
- Cited by