Published online by Cambridge University Press: 17 July 2015
A numerical analysis was performed to study the effects of combined magnetohydrodynamic and thermal radiation under convective boundary condition over a semi infinite vertical plate embedded in a non-Darcy porous medium. Coupled heat and mass transfer of free convective boundary layer with viscous nanofluid are considered. The model used for the nanofluid includes the effects of Brownian motion and thermophoresis mechanisms, while the Darcy-Forchheimer model is used for the porous medium. The governing partial differential equations are transformed into the ordinary differential equations using the similarity transformations. The accuracy of the method is observed by a comparison with other works reduced to a common case. Many results are tabulated and representative set is displayed graphically to illustrate the influence of the various parameters of interest on different profiles. Extensive numerical investigations show that the flow field, temperature, concentration and nanoparticle volume fraction shapes are significantly influenced by magnetic parameter, regular Lewis number, Brownian motion parameter, thermophoresis parameter, regular buoyancy ratio parameter and Biot number. Heat and mass transfer rates are significantly affected by the level of the applied magnetic field and the convective heat coefficient.