Published online by Cambridge University Press: 05 May 2011
Free vibration analysis of rotating composite laminated conical shells with different boundary conditions using the generalized differential quadrature method (GDQM), is investigated. Equations of motion are derived based on Love's first approximation theory by taking the effects of initial hoop tension and the centrifugal and Coriolis acceleration due to rotation and initial uniform pressure load into account. Then, the equations of motion as well as the boundary condition equations are transformed into a set of algebraic equation applying the GDQM. The results are obtained for the frequency characteristics of different orthotropic parameters, rotating velocities, cone angles and boundary conditions. The presented results are compared with those available in the literature and good agreements are achieved.