Published online by Cambridge University Press: 05 May 2011
There has been a growing interest in developing the miniaturized fluidic devices for transportation, separation and detection of bio-samples. In many of these phenomena electrokinetic effects play an important role. Studies show that in fabricating these devices, if long channels are used, separation efficiency can be improved. In these devices, turns must be induced to integrate a long channel within the small area of a single chip. But these turns can cause a serious dispersion that can result in degraded separation quality. The present study shows that the dispersion in the channel can be reduced by using an optimized distribution for ζ-potential near the turns. A computer code based on the genetic algorithm has been developed to study the dispersion in L-shape and U-shape turns.