Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T02:43:23.341Z Has data issue: false hasContentIssue false

Atomistic Analysis of Nano-Scale Crystal Plasticity in Thin Metal Films

Published online by Cambridge University Press:  05 May 2011

Y.-L. Shen*
Affiliation:
Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, U.S.A.
R. W. Leger*
Affiliation:
Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131, U.S.A.
*
*Associate Professor
**Research Assistant
Get access

Abstract

Numerical simulations based on molecular statics are carried out to study nano-scale plastic deformation behavior in thin metal films. Particular attention is devoted to correlating the overall mechanical response and the underlying crystal defect mechanisms during mechanical loading. The simulations are within the two-dimensional framework involving pair molecular interactions in singlecrystal materials. Special modeling features are utilized for studying the formation of dislocations, interface characteristics, and defect interactions. Specific problems investigated in this work include: plastic deformation and tensile fracture in a free-standing film, interface-constrained plasticity in substrate-bonded films, and homogeneous nucleation of dislocations during nanoindentation.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kelchner, C. L., Plimpton, S. J. and Hamilton, J. C., “Dislocation nucleation and defect structure during surface indentation,” Phys. Rev. B, 58, pp. 11085–11085 (1998).CrossRefGoogle Scholar
2.Tadmor, E. B., Miller, R., and Phillips, R., “Nanoindentation and incipient plasticity,” J. Mater. Res., 14, pp. 22332250 (1999).Google Scholar
3.Van Vliet, K. J., Li, J., Zhu, T., Yip, S. and Suresh, S., “Quantifying the early stages of plasticity through nanoscale experiments and simulations,” Phys. Rev. B, 67, pp. 104105–104105 (2003).Google Scholar
4.Fuente, O. Rodriguez de la, Zimmerman, J. A., Gonzalez, M. A., Figuera, J. de la, Hamilton, J. C., Pai, W. W. and Rojo, J. M., “Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations,” Phys. Rev. Lett., 88, pp. 036101–036101 (2002).CrossRefGoogle Scholar
5.Feichtinger, D., Derlet, P. M. and Van Swygenhoven, H., “Atomistic simulations of spherical indentations in nanocrystalline gold,” Phys. Rev. B, 67, pp. 024113–024113 (2003).Google Scholar
6.deCelis, B., Argon, A. S. and Yip, S., “Molecular dynamics simulation of crack tip processes in alpha-iron and copper,” J. Appl. Phys., 54, pp. 48644878 (1983).Google Scholar
7.Baiguzin, E. Y., Melker, A. I. and Mikhailin, A. I., “Atomic mechanisms of fracture nucleation and fracture development in two-dimensional crystals in thermodynamic equilibrium. I. One-phase systems,” Phys. Status Solidi. A, 108, pp. 205218 (1988).Google Scholar
8.Doyama, M., “Simulation of plastic deformation of small iron and copper single crystals,” Nucl. Instrum. Methods Phys. Res. B, 102, pp. 107112 (1995).Google Scholar
9.Zhou, S. J., Beazley, D. M., Lomdahl, P. S. and Holian, B. L., “Large-scale molecular dynamics simulations of three-dimensional ductile failure,” Phys. Rev. Lett., 78, pp. 479482 (1997).Google Scholar
10.Farkas, D., “Atomistic studies of intrinsic crack-tip plasticity,” MRS Bulletin, 25(5), pp. 3538 (2000).Google Scholar
11.Ortiz, M., Cuitino, A. M., Knap, J. and Koslowski, M., “Mixed atomistic-continuum models of material behavior: The art of transcending atomistics and informing continua,” MRS Bulletin, 26(3), pp. 216221 (2001).Google Scholar
12.Swadener, J. G., Baskes, M. I. and Nastasi, M., “Molecular dynamics simulation of brittle fracture in silicon,” Phys. Rev. Lett., 89, pp. 085503–085503 (2002).Google Scholar
13.Lynden-Bell, R. M., “Computer simulations of fracture at the atomic level,” Science, 263, pp. 17041705 (1994).CrossRefGoogle ScholarPubMed
14.Lynden-Bell, R. M., “A simulation study of induced disorder, failure and fracture of perfect metal crystals under uniaxial tension,” J. Phys.: Condens. Matter, 7, pp. 46034624 (1995).Google Scholar
15.Kitamura, T., Yashiro, K., and Ohtani, R., “Atomic simulation on deformation and fracture of nano-single crystal of nickel in tension,” JSME International Journal, Series A, 40, pp. 430435 (1997).Google Scholar
16.Heino, P., Hakkinen, H. and Kaski, K., “Molecular-dynamics study of mechanical properties of copper,” Europhys. Lett., 41, pp. 273278 (1998).Google Scholar
17.Heino, P., Hakkinen, H. and Kaski, K., “Molecular-dynamics study of copper with defects under strain,” Phys. Rev. B, 58, pp. 641652 (1998).Google Scholar
18.Komanduri, R., Chandrasekaran, N. and Raff, L. M., “Molecular dynamics (MD) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel,” Int. J. Mechanical Sci., 43, pp. 22372260(2001).Google Scholar
19.Horstemeyer, M. F., Baskes, M. I., Godfrey, A. and Hughes, D. A., “A large deformation atomistic study examining crystal orientation effects on the stress-strain relationship,” Inter. J. Plasticity, 18, pp. 203229 (2002).CrossRefGoogle Scholar
20.Holian, B. L., Voter, A. F., Wagner, N. J., Ravelo, R. J., Chen, S. P., Hoover, W. G., Hoover, C. G., Hammerberg, J. E. and Dontje, T. D., “Effects of pairwise versus many-body forces on high-stress plastic deformation,” Phys. Rev. A, 43, p. 26552661 (1991).CrossRefGoogle ScholarPubMed
21.Wagner, N. J., Holian, B. L. and Voter, A. F., “Molecular-dynamics simulations of twodimensional materials at high strain rates,” Phys. Rev. A, 45, pp. 84578470 (1992).Google Scholar
22.Phillips, R., Crystals, Defects and Micro structures - Modeling Across Scales, Cambridge University Press, Cambridge, 2001, p. 206.Google Scholar
23.Nix, W. D., “Mechanical properties of thin films,” Metall. Trans. A, 20A, pp. 22172245 (1989).CrossRefGoogle Scholar
24.Heinen, D., Bohn, H. G. and Schilling, W., “On the mechanical strength of free-standing and substratebonded Al thin films,” J. Appl. Phys., 77, pp. 37423745 (1995).Google Scholar
25.Shen, Y.-L., “Strength and interface-constrained plasticity in thin metal films,” J. Mater. Res., 18, pp. 22812284 (2003).CrossRefGoogle Scholar
26.Thompson, C. V., “The yield stress of polycrystalline thin films,” J. Mater. Res., 8, pp. 237238 (1993).Google Scholar
27.Keller, R.-M., Baker, S. P. and Arzt, E., “Quantitative analysis of strengthening mechanisms in thin Cu films: effects of film thickness, grain size, and passivation,” J. Mater. Res., 13, pp. 13071317 (1998).Google Scholar
28.Nix, W. D., “Yielding and strain hardening of thin metal films on substrates,” Scripta Mater., 39, pp. 545554 (1998).Google Scholar
29.Dehm, G., Weiss, D. and Arzt, E., “In situ transmission electron microscopy study of thermal stress induced dislocations in a thin Cu film constrained by a Si substrate,” Mater. Sci. Engng. A, 309, pp. 468472 (2001).Google Scholar
30.Legros, M., Hemker, K. J., Gouldstone, A., Suresh, S., Keller-Flaig, R.-M. and Arzt, E., “Microstructural evolution in passivated Al films on Si substrates during thermal cycling,” Acta Mater., 50, pp. 34353452 (2002).Google Scholar
31.Shen, Y.-L. and Ramamurty, U., “Constitutive response of passivated copper films to thermal cycling,” J. Appl. Phys., 93, pp. 18061812 (2003).Google Scholar
32.Shen, Y.-L. and Ramamurty, U., “Temperature dependent inelastic response of passivated copper films: Experiments, analyses and implications,” J. Vac. Sci. Technol. B, 21, pp. 12581264 (2003).Google Scholar
33.Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. and Wyrobek, J. T., “Indentation Induced Dislocation Nucleation: The Initial Point,” Acta. Mater., 44, pp. 35853598 (1996).Google Scholar
34.Gouldstone, A., Koh, H. J., Zeng, K. J., Giannakopoulos, A. E. and Suresh, S., “Discrete and Continuous Deformation during Nanoindentation of Thin Films,” Acta mater., 48, pp. 22772295 (2000).CrossRefGoogle Scholar
35.Gouldstone, A., Van Vliet, K. J. and Suresh, S., “Simulation of defect nucleation in a crystal,” Nature, 411, pp. 656–656 (2001).Google Scholar
36.Johnson, K. L., Contact Mechanics, Cambridge University Press, 1985.Google Scholar
37.Vliet, K. J. Van and Suresh, S., “Simulations of cyclic normal indentation of crystal surfaces using the bubble-raft model,” Philos. Mag. A, 82, pp. 19932001 (2002).CrossRefGoogle Scholar
38.Shaw, M. C. and DeSalvo, G. J., “On the plastic flow beneath a blunt axisymmetric indenter,” Trans. ASME J. Engng. Ind., 92, pp. 480494 (1970).Google Scholar
39.Shen, Y.-L. and Guo, Y. L., “Indentation modeling of heterogeneous materials,” Modell. Simul. Mater. Sci. Engng., 9, pp. 391398 (2001).Google Scholar
40.Frenkel, J., “Zur theorie de elastizitätsgrenze und der festigkeit kristallinischer körper,” Z. Phys., 37, pp. 572609 (1926).Google Scholar