Published online by Cambridge University Press: 31 March 2011
Shock absorption is one of the fundamental biomechanical functions of disc. The knowledge of the effect of fatigue loading, impact energy and contact period on the disc shock attenuation is important in clarifying the risk factors of back pain and evaluating the efficacy of novel disc prosthesis. The purpose of this study is to find the changes of shock attenuation of motion segment after fatigue loading, and the effect of impact energy and contact period on the disc shock attenuation pre and post fatigue loading.
The 3-unit porcine spinal motion segment was used for testing. The impact test was applied pre and post fatigue loading. Impact energy and contact period were controlled in the experiment. Shock attenuation properties, including the acceleration attenuation (AA) of disc, force transmissibility (FT) and phase delay of force (PDF) of motion segment, were calculated from the acceleration and force responses.
The results showed that the shock attenuation properties (acceleration attenuation and force transmissibility) decreased post fatigue. The disc acceleration attenuation was independent of impact energy and contact period. The disc acceleration attenuation was 0.78 (−1.06dB) pre fatigue and 1.04 (0.14dB) post fatigue. The force transmissibility of motion segment decreased post fatigue only during short contact period. The phase delay of force did not change significantly post fatigue.
We found that the fatigue loading decreased the disc shock attenuation. The disc was at higher risk of injury following fatigue loading even at a mild impact loading. The disc acceleration attenuation was invariant of impact energy and contact period, but decreased post fatigue. The disc acceleration attenuation is a good index to evaluate the degree of fatigue injury.