Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T01:22:00.713Z Has data issue: false hasContentIssue false

A Self-Contained Portable Polymerase-Chain-Reaction System Integrated with Electromagnetic Mini-Actuators for Bi-Directional Fluid Transport

Published online by Cambridge University Press:  31 August 2011

B. T. Chia
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
S.-A. Yang
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
M.-Y. Cheng
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
C.-W. Lin
Affiliation:
Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
Y.-J. Yang*
Affiliation:
Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
*
****Professor, Corresponding author
Get access

Abstract

In this paper, the development of a portable polymerase chain reaction (PCR) device is presented. Integrating electromagnetic mini-actuators for bi-directional fluid transport, the proposed device, whose dimension is 67mm × 66mm × 25mm, can be fully operated with a 5V DC voltage. The device consists of four major parts: A disposable channel chip in which PCR mixture is manipulated and reacted, a heater chip which generates different temperature zones for PCR reaction, a linear actuator array for pumping PCR mixture, and a circuit module for controlling and driving the system. The advantages of the device include the rapid temperature responses associated with continuous-flow-type PCR devices, as well as the programmable thermal cycling associated with chamber-type PCR devices. The thermal characteristics are measured and discussed. PCR amplification is successfully performed for the 122 bp segment of MCF-7/adr cell line. Due to its small footprint, this self-contained system potentially can be employed for point-of-care (POC) applications.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N., “Enzy-matic Amplification of Beta-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle-Cell Anemia,” Science, 230, pp. 13501354 (1985).CrossRefGoogle Scholar
2. Zhang, C. and Xing, D., “Miniaturized PCR Chips for Nucleic Acid Amplification and Analysis: Latest Advances and Future Trends,” Nucleic Acids Research, 35, pp. 42234237 (2007).CrossRefGoogle ScholarPubMed
3. Matsubara, Y., Kerman, K., Kobayashi, M., Yamamura, S., Morita, Y. and Tamiya, E., “Microchamber Array Based DNA Quantification and Specific Sequence Detection from a Single Copy Via PCR in Nanoliter Volumes,” Biosensors and Bioelectronics, 20, pp. 14821490 (2005).CrossRefGoogle ScholarPubMed
4. Pal, R., Yang, M., Lin, R., Johnson, B. N., Srivastava, N., Razzacki, S. Z., Chomistek, K. J., Heldsinger, D. C., Haque, R. M., Ugaz, V. M., Thwar, P. K., Chen, Z., Alfano, K., Yim, M. B., Krishnan, M., Fuller, A. O., Larson, R. G., Burke, D. T. and Burns, M. A., “An Integrated Microfluidic Device for Influenza and Other Genetic Analyses,” Lab on a Chip, 5, pp. 10241032 (2005).CrossRefGoogle ScholarPubMed
5. Kim, J., Byum, D., Mauk, M. G. and Bau, H. H., “A Disposable, Self-Contained PCR Chip,” Lab on a Chip, 9, pp. 606612 (2009).CrossRefGoogle ScholarPubMed
6. Liu, H. B., Ramalingam, N., Jiang, Y., Dai, C. C., Hui, K. M. and Gong, H. Q., “Rapid Distribution of a Liquid Column Into a Matrix of Nanoliter Wells for Parallel Real-Time Quantitative PCR,” Sensors and Actuators B, 135, pp. 671677 (2009).CrossRefGoogle Scholar
7. Neuzil, P., Zhang, C. Y., Pipper, J., Oh, S. and Zhuo, L., “Ultra Fast Miniaturized Real-Time PCR: 40 Cycles in Less Than Six Minutes,” Nucleic Acids Research, 34, e77 (2006).CrossRefGoogle ScholarPubMed
8. Li, S., Fozdar, D. Y., Ali, M. F., Li, H., Shao, D., Vykoukal, D. M., Vykoukal, J., Floriano, P. N., Olsen, M., McDevitt, J. T., Gascoyne, P. R. C. and Chen, S., “A continuous-Flow Polymerase Chain Reaction Microchip with Regional Velocity Control,” Journal of Microelectromechanical Systems, 15, pp. 223236 (2006).CrossRefGoogle ScholarPubMed
9. Chen, P.-C., Nikitopoulos, D. E., Soper, S. A. and Murphy, M. C., “Temperature Distribution Effects on Micro-CFPCR Performance,” Biomedical Microdevices, 10, pp. 141152 (2008).CrossRefGoogle ScholarPubMed
10. Crews, N., Wittwer, C. and Gale, B., “Continuous-Flow Thermal Gradient PCR,” Biomedical Microdevices, 10, pp. 187195 (2008).CrossRefGoogle ScholarPubMed
11. Sun, Y., Satyanarayan, M. V. D., Nguyen, N. T. and Kwok, Y. C., “Continuous Flow Polymerase Chain Reaction Using a Hybrid PMMA-PC Microchip with Improved Heat Tolerance,” Sensors and Actuators B, 130, pp. 836841 (2008).CrossRefGoogle Scholar
12. Kiss, M. M., Ortoleva-Donnelly, L., Beer, N. R., Warner, J., Bailey, C. G., Colston, B. W., Rothberg, J. M., Link, D. R. and Leamon, J. H., “High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets,” Analytical Chemistry, 80, pp. 89758981 (2008).CrossRefGoogle ScholarPubMed
13. Schaerli, Y., Wooton, R. C., Robinson, T., Stein, V., Dunsby, C., Neil, M. A. A., French, P. M. W., de-Mello, A. J., Abell, C. and Hollfelder, F., “Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets,” Analytical Chemistry, 81, pp. 302306 (2009).CrossRefGoogle ScholarPubMed
14. Sun, Y., Nguyen, N. T. and Kwok, Y. C., “High-Throughput Polymerase Chain Reaction in Parallel Circular Loops Using Magnetic Actuation,” Analytical Chemistry, 80, pp. 61276130 (2008).CrossRefGoogle ScholarPubMed
15. Wang, J.-H., Chien, L.-J., Hsieh, T.-M., Luo, C.-H., Chou, W.-P., Chen, P.-H., Chen, P.-J., Lee, D.-S. and Lee, G.-B., “A Miniaturized Quantitative Polymerase Chain Reaction System for DNA Amplification and Detection,” Sensors and Actuators B, 141, pp. 329337 (2009).CrossRefGoogle Scholar
16. Chiou, J., Matsudaira, P., Sonin, A. and Ehrlich, D., “A Closed-Cycle Capillary Polymerase Chain Reaction Machine,” Analytical Chemistry, 73, pp. 20182021 (2001).CrossRefGoogle ScholarPubMed
17. Bu, M., Melvin, T., Ensell, G., Wilkinson, J. S. and Evans, A. G. R., “Design and Theoretical Evaluation of a Novel Microfluidic Device to Be Used for PCR,” Journal of Micromechanics and Microengineering, 13, pp. S125130 (2003).CrossRefGoogle Scholar
18. Wang, W., Li, Z.-X., Luo, R., Lu, S.-H., Xu, A.-D. and Yang, Y.-J., “Droplet-Based Micro Oscillating-Flow PCR Chip,” Journal of Micromechanics and Microengineering, 15, pp. 13691377 (2005).CrossRefGoogle Scholar
19. Chen, L., West, J., Auroux, P.-A., Manz, A. and Day, P. J. R., “Ultrasensitive PCR and Real-Time Detection from Human Genomic Samples Using a Bidirectional Flow Microreactor,” Analytical Chemistry, 79, pp. 91859190 (2007).CrossRefGoogle ScholarPubMed
20. Frey, O., Bonneick, S., Hierlemann, A. and Lichtenberg, J., “Autonomous Microfluidic Multi-Channel Chip for Real-Time PCR with Integrated Liquid Handling,” Biomedical Microdevices, 9, pp. 711718 (2007).CrossRefGoogle ScholarPubMed
21. Chien, L.-J., Wang, J.-H., Hsieh, T.-M., Chen, P.-H., Chen, P.-J., Lee, D.-S., Luo, C.-H. and Lee, G.-B., “A Micro Circulating PCR Chip Using a Suction-Type Membrane for Fluidic Transport,” Biomedical Microdevices, 11, pp. 359367 (2009).CrossRefGoogle ScholarPubMed
22. Krishnan, M., Ugaz, V. M. and Burns, M. A., “PCR in a Rayleigh-Benard Convection Cell,” Science, 298, p. 793 (2002).CrossRefGoogle Scholar
23. Zhang, C. and Xing, D., “Parallel DNA Amplification by Convective Polymerase Chain Reaction with Various Annealing Temperatures on a Thermal Gradient Device,” Analytical Biochemistry, 387, pp. 102112 (2009).CrossRefGoogle ScholarPubMed
24. Chang, Y.-H., Lee, G.-B., Huang, F.-C., Chen, Y.-Y. and Lin, J.-L., “Integrated Polymerase Chain Reaction Chips Utilizing Digital Microfluidics,” Biomedical Microdevices, 8, pp. 215225 (2006).CrossRefGoogle ScholarPubMed
25. Guttenberg, Z., Muller, H., Habermuller, H., Geisbauer, A., Pipper, J., Felbel, J., Kielpinski, M., Scriba, J. and Wixforth, A, “Planar Chip Device for PCR and Hybridization with Surface Acoustic Wave Pump,” Lab on a Chip, 5, pp. 308317 (2005).CrossRefGoogle ScholarPubMed
26. Tsuchiya, H., Okochi, M., Nagao, N., Shikida, M. and Honda, H., “On-Chip Polymerase Chain Reaction Microdevice Employing a Magnetic Droplet-Manipulation System,” Sensors and Actuators B, 130, pp. 583588 (2008).CrossRefGoogle Scholar