Published online by Cambridge University Press: 16 October 2012
Human aortic valve is made of thin collagen type tissue. The three leaflets open and close under fluid forces exerted upon them. To simulate the hemodynamic characteristics of the blood flow, ANSYS CFX10.0 software was utilized to analyze the three-dimensional Reynolds-averaged Navier-Stokes equations. With a quasi-steady analysis model, we predict values of the blood velocity and the wall shear stress both over the valve leaflets and the endothelial lining. In addition, investigation on fluid dynamic of a heart valve supposed suffering prolapsed disease has been also conducted, and compared with normal valve. Analysis results highlight that leaflet opening situation and valve geometry affect the shear stress distribution and vortex flow regime. Maximum shear stress takes place near the center of leaflet trailing edge at the very beginning of systolic phase with value of 7.093N/m2. At peak systole, the maximum wall shear stress distributes near the aortic root where jet impingement takes place. Current study also demonstrated the interactive impact between low and high wall shear stress on relation to heart valve disease.