No CrossRef data available.
Published online by Cambridge University Press: 05 May 2011
This brief note discusses some issues related to the calculation of energy release rate for elliptical cracks in anisotropic solids. By using the Stroh formalism, analytical expressions of the energy release rate are obtained for elliptical cracks in an unbounded anisotropic solid. Because of material anisotropy and geometric asymmetry of the crack, the local energy release rate varies along the crack front. The average energy release rate can be obtained by integrating the local energy release rate over the entire crack front. On the other hand, the total work done by the crack-surface traction on the entire crack opening displacement can be easily evaluated once the crack opening displacement is known. It is shown that the average energy release rate is equal to the rate of change per unit crack area increment of the work done by the external load on the crack opening displacement.