Published online by Cambridge University Press: 31 August 2011
The goal of the combustion research is to achieve optimum combustion mode. Reaction Front velocity is one of the most important parameter that is studied in this field. Most biomass consumed at the present time is burned in fixed or moving beds. Fixed-bed combustion systems are characterized by the slow combustion of large particles subjected to an oxidizing ambient. In this paper a model for propagation of a reaction front of wood particles in a fixed Bed is presented. Once the bed is ignited, an apparent flame zone is formed at the bed's top surface and the flame front moves downwards into the bed of fuel at a speed depending on fuel type and operating parameters. Effect of different parameters such as air flow rate through the bed, primary air temperature, moisture content, particle size and number density of fuel particles on the reaction front velocity has been studied. In order to compare the results of this model with the associated experimental data three species of wood fuels are studied and the agreement is found to be satisfactory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.