Published online by Cambridge University Press: 05 May 2011
The transient thermal process of a thin-wall beam with CO2 Gas Metal Arc Welding (GMAW) is analyzed by Finite Element Analysis Method (FEA). The thermal input is simplified as transient section body heat sources and loaded as its actual sequence in the analysis. The transient temperature field obtained can represent the basic characteristics of the real welding process and can be used as the foundation of thermal elastic-plastic analysis. Based on the temperature field, thermal elastic-plastic FEA is performed on the thin-wall beam. The distribution and change of the welding deformation, stress and strain are obtained and compared with the experiment results. Also an improvement can be presented on the inherent strain method. Using the inherent strain method, the welding deformation of the thin-wall beam is calculated. The temperature loading method is developed to load the variable inherent strain value expediently. The loading of inherent strain value on spatial welding line that is unparallel to the global coordinate axis is achieved with the application of element coordinate system. Comparison with the experiment results shows that both the thermal-elastic-plastic analysis and inherent strain analysis method can be used to predict the welding deformation effectively, the results calculated by both the thermal-elastic-plastic analysis and inherent strain analysis are close to the test measure results.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.