No CrossRef data available.
Published online by Cambridge University Press: 05 May 2011
The importance of nonreactive acoustic admittance at a burner exit plane on the flame-driving characteristic was discussed using the measured phase difference between the velocity and pressure oscillations, and the acoustic wave structure inside the duct. Also, the flame-driving characteristics were investigated by flame radiation measurements, and results were compared with those obtained previously from admittance studies. Results show that the comparisons are in good agreement. Also, the flame-driving characteristics are closed related to the acoustic wave structure at the burner exit plane, and could be qualitatively predicted by knowing the imaginary part of nonreactive burner acoustic admittance.