Published online by Cambridge University Press: 05 May 2011
The scattering of time harmonic plane longitudinal and transverse elastic waves in a composite consisting of randomly distributed identical isotropic spherical inclusions embedded in an isotropic matrix with anisotropic interface layers is examined. The interface region is modeled as a spherically isotropic shell of finite thickness with five independent elastic constants. The Frobenius power series solution method is utilized to deal with the interface anisotropy and the effect of random distribution of particulates in the composite medium is taken into account via a recently developed generalized self-consistent multiple scattering model. Numerical values of phase velocities and attenuations of coherent plane waves as well as the effective elastic constants are obtained for a moderately wide range of frequencies, particle concentrations, and interface anisotropies. The numerical results reveal the significant dependence of phase velocities and effective elastic constants on the interface properties. They show that interface anisotropy can moderately depress the effective phase velocities and the elastic moduli, but leave effective attenuation nearly unaffected, especially at low and intermediate frequencies. Limiting cases are considered and good agreements with recent solutions have been obtained.