Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T23:21:06.287Z Has data issue: false hasContentIssue false

Deformation Characteristics in Micromachining of Single Crystal 6H-SiC: Insight into Slip Systems Activation

Published online by Cambridge University Press:  05 March 2020

K. H. Pang
Affiliation:
Surrey Space Centre, University of Surrey, Guildford, GU2 7XH, The UK.
R. Zhou
Affiliation:
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, The UK.
A. Roy*
Affiliation:
Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, The UK.
*
*Corresponding author ([email protected])
Get access

Abstract

Silicon carbide (SiC) is ideally suitable as a sensor material in harsh environments. Despite the brittleness in the macroscopic scale, plasticity in SiC is observed at small component length-scales. Previous nanoindentation based study combining experiment and numerical approaches of single-crystal 6H-SiC has shown that slip activation is rather complex, and that non-basal slip could potentially dominate the plastic deformation behaviour. In this study, we investigated the local deformation response evolution of shear strain directly under and in the vicinity of the indenter tip. The results show the pyramidal slip families contribute significantly to the deformation process.

Type
Research Article
Copyright
Copyright © 2020 The Society of Theoretical and Applied Mechanics

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, S., Choi, J., Jung, M., Joo, S. and Kim, S., “Silicon carbide-based hydrogen gas sensors for high-temperature applications,” Sensors, 13, pp. 13575–83. doi:10.3390/s131013575 (2013).CrossRefGoogle ScholarPubMed
Friedland, E., Hlatshwayo, T., and van der Berg, N., “Influence of radiation damage on diffusion of fission products in silicon carbide,” physica status solidi (c), 10, pp. 208215. doi:10.1002/pssc.201200457 (2013).CrossRefGoogle Scholar
Avincola, A. V., Grosse, M., Stegmaier, U., Steinbrueck, M., and Seifert, H. J., “Oxidation at high temperatures in steam atmosphere and quench of silicon carbide composites for nuclear application,” Nuclear Engineering and Design, 295, pp. 468478. doi:10.1016/j.nucengdes.2015.10.002 (2015).CrossRefGoogle Scholar
Mehregany, M., and Zorman, C. A., “SiC MEMS: opportunities and challenges for applications in harsh environments,” Thin Solid Films, 355, pp. 518524. doi:10.1016/S0257-8972(99)00374-6 (1999).CrossRefGoogle Scholar
Yin, L., Vancoille, E. Y. J., Ramesh, K., and Huang, H., “Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining,” International Journal of Machine Tools and Manufacture, 44, pp. 607615. doi:10.1016/j.ijmachtools.2003.12.006 (2004).CrossRefGoogle Scholar
Meng, B., Zhang, Y., and Zhang, F., “Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter.Applied Physics A, 122, pp. 247. doi:10.1007/s00339-016-9802-7 (2016).CrossRefGoogle Scholar
Morris, J. C., & Callahan, D. L.Origins of microplasticity in low-load scratching of silicon. Journal of Materials Research, 9(11), pp. 29072913. https://doi.org/10.1557/JMR.1994.2907 (1994).CrossRefGoogle Scholar
Wang, P., Ge, P., Bi, W., Liu, T., & Gao, Y.Stress analysis in scratching of anisotropic single-crystal silicon carbide.International Journal of Mechanical Sciences, 141, pp. 18. https://doi.org/10.1016/j.ijmecsci.2018.03.042 (2018).CrossRefGoogle Scholar
Goel, S., Luo, X., Comley, P., Reuben, R. L., and Cox, A., “Brittle–ductile transition during diamond turning of single crystal silicon carbide,” International Journal of Machine Tools and Manufacture, 65, pp. 1521. doi: 10.1016/j.ijmachtools.2012.09.001 (2013).CrossRefGoogle Scholar
Mir, A., Luo, X., & Siddiq, A.Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon. International Journal of Advanced Manufacturing Technology, 88(9–12), pp. 24612476. https://doi.org/10.1007/s00170-016-8940-6 (2017).CrossRefGoogle Scholar
Patten, J., Gao, W., and Yasuto, K., “Ductile Regime Nanomachining of Single-Crystal Silicon Carbide,” Journal of Manufacturing Science and Engineering, 127, 522. doi:10.1115/1.1949614 (2005).CrossRefGoogle Scholar
Yan, J., Zhang, Z., and Kuriyagawa, T., “Mechanism for material removal in diamond turning of reaction-bonded silicon carbide,” International Journal of Machine Tools and Manufacture, 49, pp. 366374. doi:10.1016/j.ijmachtools.2008.12.007 (2009).CrossRefGoogle Scholar
Xiao, G., To, S., and Zhang, G., “The mechanism of ductile deformation in ductile regime machining of 6H SiC. Computational Materials Science,” 98, pp. 178188. doi:10.1016/j.commatsci.2014.10.045 (2015).CrossRefGoogle Scholar
Yan, J., Gai, X., and Harada, H.Subsurface Damage of Single Crystalline Silicon Carbide in Nanoindentation Tests,” Journal of Nanoscience and Nanotechnology, 10, pp. 78087811. doi:10.1166/jnn.2010.2895 (2010).CrossRefGoogle ScholarPubMed
Page, T. F., Oliver, W. C., and McHargue, C. J., “The deformation behavior of ceramic crystals subjected to very low load nanoindentations,” Journal of Materials Research, 7, pp. 450473. doi:10.1557/JMR.1992.0450 (1992).CrossRefGoogle Scholar
Page, T. F., Riester, L., and Hainsworth, S. V., “The Plasticity Response Of 6H-Sic and Related Isostructural Materials to Nanoindentation: Slip vs Densification,” MRS Proceedings, 522, pp. 113. doi:10.1557/PROC-522-113 (1998).CrossRefGoogle Scholar
Datye, A., Li, L., Zhang, W., Wei, Y., Gao, Y., and Pharr, G. M., “Extraction of Anisotropic Mechanical Properties From Nanoindentation of SiC-6H Single Crystals,” Journal of Applied Mechanics, 83, 091003. doi:10.1115/1.4033790 (2016).CrossRefGoogle Scholar
Pang, K. H., Tymicki, E., and Roy, A., “Indentation in single-crystal 6H silicon carbide: Experimental investigations and finite element analysis,” International Journal of Mechanical Sciences, 144. doi:10.1016/j.ijmecsci.2017.11.021 (2018).CrossRefGoogle Scholar
Zhou, R., Pang, K.-H. (Xavier), Bisht, A., Roy, A., Suwas, S., and Silberschmidt, V. V., “Modelling strain localization in Ti-6Al-4V at high loading rate: A phenomenological approach,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. (2019). In pressGoogle ScholarPubMed
Liu, Q., Roy, A., and Silberschmidt, V. V., “Temperature-dependent crystal-plasticity model for magnesium: A bottom-up approach,” Mechanics of Materials, 113(Supplement C), pp. 4456. doi:https://doi.org/10.1016/j.mechmat.2017.07.008 (2017).CrossRefGoogle Scholar
Staroselsky, A., and Anand, L., “A constitutive model for hcp materials deforming by slip and twinning,” International Journal of Plasticity, 19, pp. 18431864. doi:10.1016/S0749-6419(03)00039-1 (2003).CrossRefGoogle Scholar
Gao, Y. F., Larson, B. C., Lee, J. H., Nicola, L., Tischler, J. Z., and Pharr, G. M., “Lattice Rotation Patterns and Strain Gradient Effects in Face- Centered-Cubic Single Crystals Under Spherical Indentation,” Journal of Applied Mechanics, 82, 061007. doi:10.1115/1.4030403 (2015).CrossRefGoogle Scholar
Liu, Q., Demiral, M., Roy, A., and Silberschmidt, V. V., “Modelling and Simulations of Nanoindentation in Single Crystals,” In Applied Nanoindentation in Advanced Materials, John Wiley and Sons Ltd., pp. 561577. doi:10.1002/9781119084501.ch23 (2017).CrossRefGoogle Scholar
Liu, Q., Roy, A., Tamura, S., Matsumura, T., and Silberschmidt, V. V., “Micro-cutting of single-crystal metal: Finite-element analysis of deformation and material removal,” International Journal of Mechanical Sciences, 118, pp. 135143. doi:10.1016/j.ijmecsci.2016.09.021 (2016).CrossRefGoogle Scholar
Huang, Y., A User-material Subroutine Incroporating Single Crystal Plasticity in the ABAQUS Finite Element Program. Harvard University (1991).Google Scholar
Hutchinson, J. W., “Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 348, (10 February 1976).Google Scholar
Peirce, D., Asaro, R. J., and Needleman, A., “An analysis of nonuniform and localized deformation in ductile single crystals,” Acta Metallurgica, 30, pp. 10871119. doi: 10.1016/0001-6160(82)90005-0 (1982).CrossRefGoogle Scholar
Asaro, R. J., “Crystal Plasticity,” Journal of Applied Mechanics, 50, pp. 921. doi:10.1115/1.3167205 (1983).CrossRefGoogle Scholar
Asaro, R. J., “Micromechanics of Crystals and Polycrystals,” Advances in Applied Mechanics, 23, doi:10.1016/S0065-2156(08)70242-4 (1983).CrossRefGoogle Scholar