Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T00:50:00.000Z Has data issue: false hasContentIssue false

X-ray photoelectron spectroscopy study of the metal/polymer contacts involving aluminum and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) derivatives

Published online by Cambridge University Press:  31 January 2011

S. K. M. Jönsson
Affiliation:
Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
W. R. Salaneck
Affiliation:
Department of Physics, Linköping University, SE-581 83 Linköping, Sweden
M. Fahlman
Affiliation:
Department of Science and Technology, Linköpin g University, SE-601 74 Norrköping, Sweden
Get access

Abstract

The contact formed between aluminum and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT-PSS) derivatives was studied using x-ray photoelectron spectroscopy. The aluminum/PEDOT-PSS contact contains an interfacial layer formed by chemical reactions between aluminum and mainly poly(styrenesulfonic acid) (PSSH). These chemical interactions were studied with the help of model systems (PSSH, benzenesulfonic acid, and sodium benzenesulfonate). The preferred reaction site of aluminum is the SO3 and SO3H+ groups of the PSS chains, giving rise to C-S-Al(-O) and C-O-Al species. The resulting contact formed consists of an insulating aluminum/PSS layer and a thin region of partially dedoped PEDOT-PSS. There is significant aluminum diffusion into films of the highly conducting form of PEDOT-PSS that have substantially less PSS at the surface. Hence, no (thick) aluminum/PSS layer is formed in this case, though the PEDOT chains close to the aluminum contact will still be partially dedoped as for the aluminum/PEDOT-PSS case.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Carter, S.A., Angelopoulos, M., Karg, S., Brock, P.J., and Scott, J.C., Appl. Phys. Lett. 70, 2067 (1997).CrossRefGoogle Scholar
2.Friend, R.H., Gymer, R.W., Holmes, A.B., Staring, E.G.J., Marks, R.N., Taliani, C., Bradley, D.D.C., Santos, D.A. dos, Brédas, J.L., Lögdlund, M., and Salaneck, W.R., Nature 397, 121 (1998).CrossRefGoogle Scholar
3.Conjugated Polymer and Molecular Interfaces: Science and Technology for Photonic and Optoelectronic Applications, edited by Salaneck, W.R., Seki, K., Kahn, A., and Pireaux, J-J. (Marcel Dekker, New York, 2002).Google Scholar
4.Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R., Adv. Mater. 12, 481 (2000).3.0.CO;2-C>CrossRefGoogle Scholar
5.Kim, J.S., Granstrom, M., Friend, R.H., Johansson, N., Salaneck, W.R., Daik, R., Feast, W.J., Cacialli, F., J. Appl. Phys. 84, 6859 (1998).CrossRefGoogle Scholar
6.Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P., Science 290, 2123 (2000).CrossRefGoogle Scholar
7.Gelinck, G.H., Geuns, T.C.T., Leeuw, D.M.d., Appl. Phys. Lett. 77, 1487 (2000).CrossRefGoogle Scholar
8.Ghosh, S. and Inganäs, O., Adv. Mater. 11, 1214 (1999).3.0.CO;2-3>CrossRefGoogle Scholar
9.Roman, L.S., Andersson, M.R., Yohannes, T., and Inganäs, O., Adv. Mater. 9, 1164 (1997).CrossRefGoogle Scholar
10.Nilsson, D., Chen, M., Kugler, Th., Remonen, T., Armgarth, M., and Berggren, M., Adv. Mater. 14, 51 (2002).3.0.CO;2-#>CrossRefGoogle Scholar
11.Bantikassegn, W. and Inganäs, O., Thin Solid Films 293, 138 (1997).CrossRefGoogle Scholar
12.Greczynski, G., Kugler, Th., and Salaneck, W.R., Thin Solid Films 354, 129 (1999).CrossRefGoogle Scholar
13.Greczynski, G., Kugler, Th., Keil, M., Osikowicz, W., Fahlman, M., and Salaneck, W.R., J. Electron Spectrosc. Relat. Phenom. 121, 1 (2001).CrossRefGoogle Scholar
14.Jonsson, S.K.M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., Gon, A.W. Denier van der, Salaneck, W.R., and Fahlman, M., Synth. Met. (in press).Google Scholar
15.Himmelhaus, M., Gauss, I., Buck, M., Eisert, F., Wo¨ll, C., Grunze, M., J. Electron Spectrosc. Relat. Phenom. 92, 139 (1998).CrossRefGoogle Scholar
16.Deng, W., Yang, L., Fujita, D., Nejoh, H., and Bai, C., Appl. Phys. A 71, 639 (2000).CrossRefGoogle Scholar
17.Lögdlund, M. and Brédas, J.L., J. Chem. Phys. 101, 4357 (1994).CrossRefGoogle Scholar
18.Fahlman, M., Salaneck, W.R., Moratti, S.C., Holmes, A.B., and Brédas, J.L., Chem.—Eur. J. 3, 286 (1997).CrossRefGoogle Scholar
19.Jönsson, S.K.M., Jong, M.P. de, Groenendaal, L., Salaneck, W.R., and Fahlman, M. (submitted for publication).Google Scholar