Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:33:31.589Z Has data issue: false hasContentIssue false

X-ray diffraction line broadening effects in MBa2Cu3O7−δ (M = Y, Gd) thin films

Published online by Cambridge University Press:  26 July 2012

P. Scardi
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, I-38050 Mesiano (TN), Italy
F. C. Matacotta
Affiliation:
CNR-ISM, Via Gobetti 101, I-40129 Bologna, Italy
V. I. Dediu
Affiliation:
HTS Laboratory, ICTP, P.O. Box 586, I-34100 Trieste, Italy
L. Correra
Affiliation:
CNR-LAMEL, Via Gobetti 101, I-40129 Bologna, Italy
Get access

Abstract

X-ray diffraction line profile analysis (LPA) has been carried out on a set of superconducting thin films of MBa2Cu3O7−δ (MBCO, M = Y, Gd), deposited by pulsed and continuous physical vapor deposition (PVD) techniques on different single-crystal substrates. The choice of appropriate deposition conditions, substrates, and buffer layers promoted a high degree of [00l] preferred orientation, leading to a well-defined columnar grain morphology in the MBCO films. Under such conditions, the LPA of diffraction patterns, collected with the widely spread Bragg–Brentano geometry, gives detailed information on the distributions of coherent scattering domain (crystallite) size and microstrain along the [00l] growth direction; considering the particular MBCO film microstructure, the mean crystallite size () can be regarded as the mean distance between extended planar defects parallel to the film surface. The significance of goes beyond a merely statistical value. As long as the morphology of the films is similar, is found to be strictly connected with the average microstrain by a simple proportionality relation. Moreover, the correlation extends to important superconducting transport parameters, like the transition width ΔTc. These regular behaviors are irrespective of deposition techniques, substrate, and film materials, and are a clear indication of some fundamental relation between the defects and the overall properties of the films.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dhere, N. G., in Thin Films for Emerging Applications, Vol. 16 of Physics of Thin Films, edited by Francombe, M. H. and Vossen, J. L. (Academic Press, San Diego, 1992), pp. 2143.Google Scholar
2.Roy, R. A., Etzold, K. F., and Cuomo, J. J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 141.Google Scholar
3.Naito, M., Hammond, R. H., Oh, B., Hahn, M. R., Hsu, J. W. P., Rosenthal, P., Marshall, A. F., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., J. Mater. Res. 2, 713 (1987).CrossRefGoogle Scholar
4.Fork, D. K., Garrison, S. M., Hawley, M., and Geballe, T. H., J. Mater. Res. 7, 1641 (1992).CrossRefGoogle Scholar
5.Ye, J. and Nakamura, K., Phys. Rev. B 50, 1 (1994).Google Scholar
6.Ye, J. and Nakamura, K., Phys. Rev. B 48, 7554 (1993).CrossRefGoogle Scholar
7.Dediu, V. I., Jiang, Q. D., Matacotta, F. C., Scardi, P., Lazzarino, M., Nieva, G., and Civale, L., Supercond. Sci. Technol. 8, 160 (1995).CrossRefGoogle Scholar
8.Williamson, G. K. and Smallman, R. E., Philos. Mag. 1, 34 (1956).CrossRefGoogle Scholar
9.Krivoglaz, M. A., Martynenko, O. V., and Ryaboshapka, K. P., Phys. Met. Metall. 55, 1 (1983).Google Scholar
10.Ungar, T., Mughrabi, H., Rönnpagel, D., and Wilkens, M., Acta Metall. 32, 333 (1984).CrossRefGoogle Scholar
11.Kuzel, R., Jr. and Klimanek, P., J. Appl. Crystallogr. 22, 299 (1989).CrossRefGoogle Scholar
12.Berkum, J. V., Strain fields in Crystalline Materials (Thesis, University of Delft, The Netherlands, 1994).Google Scholar
13.Langford, J. I., Boultif, A., Auffredic, J. P., and Louer, D., J. Appl. Crystallogr. 26, 22 (1993).CrossRefGoogle Scholar
14.Benedetti, A., Fagherazzi, G., Enzo, S., and Battagliarin, M., J. Appl. Crystallogr. 21, 543 (1988).CrossRefGoogle Scholar
15.Scardi, P., Lutterotti, L., and Maggio, R. Di, Powder Diffraction 6, 20 (1991).CrossRefGoogle Scholar
16.Felder, R. and Berry, B. S., J. Appl. Crystallogr. 3, 372 (1972).CrossRefGoogle Scholar
17.Perry, A. J., Valvoda, V. V., and Rafaja, D., Thin Solid Films 214, 169 (1992).CrossRefGoogle Scholar
18.Shute, C. J. and Cohen, J. B., J. Appl. Phys. 70, 2104 (1991).CrossRefGoogle Scholar
19.Cappuccio, G., Leoni, M., Scardi, P., Sessa, V., and Terranova, L., Mater. Sci. Forum 203, 285290 (1996).CrossRefGoogle Scholar
20.Scardi, P., in Science and Technology of Thin Films, edited by Matacotta, F. C. and Ottaviani, G. (World Scientific, Singapore, 1995), pp. 241278.CrossRefGoogle Scholar
21.Hosemann, R. and Bagchi, S. N., Direct Analysis of Diffraction by Matter (North-Holland Publ. Comp., lAmsterdam, 1962).Google Scholar
22.Vogel, W., Haase, J., and Hosemann, R., Z. Naturforsch. A29, 1152 (1974).Google Scholar
23.Stokes, A. R., Proc. Phys. Soc. A61, 382 (1948).CrossRefGoogle Scholar
24.Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
25.Warren, B. E. and Averbach, B. L., J. Appl. Phys. 21, 595 (1950).CrossRefGoogle Scholar
26.Warren, B. E. and Averbach, B. L., J. Appl. Phys. 23, 1059 (1952).CrossRefGoogle Scholar
27.Warren, B. E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1969).Google Scholar
28.Lutterotti, L. and Scardi, P., in Advances in X-ray Analysis, edited by Barrett, C. S., Gilfrich, J. V., Huang, T. C., Jenkins, R., McCarthy, G. J., Predecki, P. K., Ryon, R., and Smith, D. K. (Plenum Press, New York, 1992), Vol. 35A, pp. 577584.Google Scholar
29.Scardi, P., Lutterotti, L., Correra, L., and Nicoletti, S., J. Mater. Res. 8, 2780 (1993).CrossRefGoogle Scholar
30.Scardi, P., Lutterotti, L., and Maistrelli, P., Powder Diffraction 9, 180 (1994).CrossRefGoogle Scholar
31.Correra, L., Nicoletti, S., Neri, S., Arcidiacono, F., and Scardi, P., in Report on Buffer and Passivation Layers Deposition, ESPRIT Project 6625, X BAND PRO (CEC, 1994).Google Scholar
32.Ferrari, S. and Scardi, P., in Advances in Science and Technology, Vol. 5 (Advances in Inorganic Films and Coatings), edited by Vincenzini, P. (Techna, Faenza, 1995), pp. 500508.Google Scholar
33.Kothari, D. C., Scardi, P., Gialanella, S., and Guzman, S., Philos. Mag. 61, 627 (1990).CrossRefGoogle Scholar
34. Powder Diffraction File, Swarthmore, PA, International Centre for Diffraction Data (1988); Card No. 34–394.Google Scholar
35.Scardi, P., Kothari, D. C., and Guzman, L., Thin Solid Films 195, 213 (1991).CrossRefGoogle Scholar
36.Scardi, P. and Antonucci, P. L., J. Mater. Res. 8, 1829 (1993).CrossRefGoogle Scholar
37.Scardi, P., Lutterotti, L., and Maggio, R. Di, Powder Diffraction 6, 20 (1991).CrossRefGoogle Scholar
38.Balzar, D. and Ledbetter, H., J. Mater. Sci. Lett. 11, 1419 (1992).CrossRefGoogle Scholar
39.Sidorov, M. V., Oktyabrsky, S. R., and Krasnosvobodtsev, S. I., Mater. Sci. Eng. B18, 295 (1993).CrossRefGoogle Scholar
40.Warren, B. E., Prog. Metal. Phys. 8, 147 (1959).CrossRefGoogle Scholar
41.Langford, J. I., private communication (1995).Google Scholar
42.Ustinov, A. I. and Olihovskaya, L. A., Reprint of the Inst. of Metal Physics Acad. of Sci. of the Ukr. SSR (1988), No. 25.88.Google Scholar