Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T07:52:59.076Z Has data issue: false hasContentIssue false

Wüstite nanocrystals: Synthesis, structure and superlattice formation

Published online by Cambridge University Press:  31 January 2011

Ming Yin*
Affiliation:
Materials Research Science and Engineering Center, Columbia University, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
Zhuoying Chen
Affiliation:
Materials Research Science and Engineering Center, Columbia University, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
Brian Deegan
Affiliation:
Materials Research Science and Engineering Center, Columbia University, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
Stephen O’Brien*
Affiliation:
Materials Research Science and Engineering Center, Columbia University, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
*
a)Current address: Los Alamos National Laboratory, Los Alamos, NM 87545
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Monodisperse ligand-capped cubic wüstite FexO nanocrystals were prepared by a novel thermal decomposition method of iron (II) acetate in the presence of oleic acid as the surfactant. Controlled size distributions of cubic nanoparticles possessing the rock salt crystal structure were isolated in the range 10–18 nm. The influence of molar ratio of surfactant to precursor was investigated to understand size control and monodispersity. Using inexpensive, nontoxic metal salts as reactants, we were able to synthesize gram-scale quantities of relatively monodisperse nanocrystals in a single reaction, without further size selection, characterized by x-ray diffraction and transmission electron microscopy. The procedure enables the collection of samples of uniform size as a function of time, thus permitting a preliminary solid-state kinetic analysis of the reaction as a function of increasing particle size. Following controlled evaporation from nonpolar solvents, self-assembly into two-dimensional arrays, three-dimensional single-component superlattices, and binary superlattices with gold nanoparticles were observed and characterized.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1O’Brien, S., Murray, C.B. Brus, L.E.: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 2001Google Scholar
2Park, J., An, K., Hwang, Y., Park, J-G., Noh, H-J., Kim, J-Y., Park, J-H., Hwang, N-M. Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 2004Google Scholar
3Pinna, N., Grancharov, S., Beato, P., Bonville, P., Antonietti, M. Niederberger, M.: Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17, 3044 2005Google Scholar
4Cornell, R.M. Schwertmann, U.: The Iron Oxides John Wiley & Sons: New York 1997Google Scholar
5Sun, S. Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204 2002Google Scholar
6Andreas Jordan, R.S., Wust, P., Fähling, H. Felix, R.: Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413 1999Google Scholar
7Kim, D.K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B. Muhammed, M.: Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 225, 256 2001Google Scholar
8Yin, M. O’Brien, S.: Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125, 10180 2003Google Scholar
9Yin, M., Wu, C-K., Lou, Y., Burda, C., Koberstein, J.T., Zhu, Y. O’Brien, S.: Copper oxide nanocrystals, J. Am. Ceram. Soc. 127, 9506 2005Google Scholar
10Yin, M., Gu, Y., Kuskovsky, I.L., Andelman, T., Zhu, Y., Neumark, G.F. O’Brien, S.: Zinc oxide quantum rods. J. Am. Ceram. Soc. 126, 6206 2004Google Scholar
11Nagakura, S., Ishiguro, T. Nakamura, Y.: Structure of Wuestite Observed by UHV-HR-1 MV Electron Microscope, Dept. Metall., Tokyo Inst. Technol., Tokyo, Japan. 1983Google Scholar
12Radler, M.J.: X-ray and Neutron Diffraction Studies of the Defect Structure of Wuestite and Manganosite Northwestern University, Evanston, IL 1990 407Google Scholar
13Gavarri, J. R., Carel, C. Weigel, D.: Reexamination of the cluster structure of the P′ and P″ quenched wuestites. C.R. Acad. Sci., Ser. 2 307, 705 1988Google Scholar
14Fjellvag, H., Hauback, B.C., Vogt, T. Stolen, S.: Monoclinic nearly stoichiometric wustite at low temperatures. American Mineralogist. 87, 347 2002Google Scholar
15Fjellvag, H., Gronvold, F., Stolen, S. Hauback, B.: On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J. Solid State Chem. 124, 52 1996Google Scholar
16Stolen, S., Gloeckner, R. Gronvold, F.: Nearly stoichiometric iron monoxide formed as a metastable intermediate in a two-stage disproportionation of quenched wuestite. Thermodynamic and kinetic aspects. Thermochim. Acta 256, 91 1995Google Scholar
17Redl, F.X., Black, C.T., Papaefthymiou, G.C., Sandstrom, R.L., Yin, M., Zeng, H., Murray, C.B. O’Brien, S.P.: Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc. 126, 14583 2004Google Scholar
18Ayyub, P., Palkar, V.R., Chattopadhyay, S. Multani, M.: Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135 1995Google Scholar
19Herhold, A.B., Chen, C-C., Johnson, C.S., Tolbert, S.H. Alivisatos, A.P.: Structural transformations and metastability in semiconductor nanocrystals. Phase Transitions 68, 1 1999Google Scholar
20Qadri, S.B., Skelton, E.F., Hsu, D., Dinsmore, A.D., Yang, J., Gray, H.F. Ratna, B.R.: Size-induced transition-temperature reduction in nanoparticles on ZnS. Phys. Rev. B 60, 9191 1999Google Scholar
21Jana, N., Chen, Y. Peng, X.: Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 20, 3931 2004Google Scholar
22Jun, Y-W., Choi, J-S. Cheon, J.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. Engl. 45, 3414 2006Google Scholar
23Greene, L.E., Yuhas, B.D., Law, M., Zitoun, D. Yang, P.: Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535 2006CrossRefGoogle ScholarPubMed
24Wang, X., Chen, X., Gao, L., Zheng, H., Zhang, Z. Qian, Y.: One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108, 16401 2004Google Scholar
25Jun, Y-W., Lee, J-H., Choi, J-S. Cheon, J.: Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B 109, 14795 2005Google Scholar
26Ding, J., Miao, W.F., Pirault, E., Street, R. McCormick, P.G.: Structural evolution of Fe + Fe2O3 during mechanical milling. J. Magn. Magn. Mater. 177, 933 1998Google Scholar
27Ding, J., Miao, W.F., Street, R. McCormick, P.G.: Fe3O4/Fe magnetic composite synthesized by mechanical alloying. Scripta Mater. 35, 1307 1996Google Scholar
28Hyeon, T., Lee, S.S., Park, J., Chung, Y. Na, H.B.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 2001Google Scholar
29Francis, R.J., O’Brien, S., Fogg, A.M., Halasyamani, P.S., O’Hare, D., Loiseau, T. Ferey, G.: Time-resolved in-situ energy and angular dispersive x-ray diffraction studies of the formation of the microporous gallophosphate ULM-5 under hydrothermal conditions. J. Am. Chem. Soc. 121, 1002 1999CrossRefGoogle Scholar
30Hancock, J.D. Sharp, J.H.: Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 55, 74 1972CrossRefGoogle Scholar
32Redl, F.X., Cho, K.S., Murray, C.B. O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968 2003Google Scholar
33Zeng, H., Li, J., Liu, J.P., Wang, Z.L. Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395 2002CrossRefGoogle ScholarPubMed
34Shevchenko, E.V., Talapin, D.V., O’Brien, S. Murray, C.B.: Polymorphism in AB(13) nanoparticle superlattices: An example of semiconductor-metal metamaterials. J. Am. Chem. Soc. 127, 8741 2005Google Scholar
35Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S. Murray, C.B.: Structural diversity in nanoparticle superlattices. Nature 439, 55 2005Google Scholar
36Shevchenko, E.V., Talapin, D.V., Murray, C.B. O’Brien, S.: Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 28(11), 3620 2006Google Scholar
37Prasad, B.L.V., Stoeva, S.I., Sorensen, C.M. Klabunde, K.J.: Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir 18, 7515 2002Google Scholar