Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T16:11:35.708Z Has data issue: false hasContentIssue false

Wet processing for the fabrication of ceramic thin films on plastics

Published online by Cambridge University Press:  11 March 2013

Hiromitsu Kozuka*
Affiliation:
Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Development of a versatile technique for fabricating ceramic thin films on plastics has long been a challenge for those who aim at providing the surface of lightweight, flexible plastics a variety of functions. Wet processing techniques that have been reported so far on the fabrication of ceramic thin films on plastics are reviewed in this article. The techniques include crystalline nanoparticle deposition, liquid phase deposition, sol-gel method and chemical solution deposition (CSD). In these techniques, the issue of how to crystallize and/or densify the films on plastic substrates without firing has been focused on, and it would be recognized that great efforts have been made on this issue. Self-combustion of CSD thin films is also introduced, which only requires heat treatment at low temperatures for films to be crystallized. Finally a transfer process that our group has proposed recently is presented, which is unique in that the crystallization and densification are guaranteed by a firing step.

Type
Invited Feature Review
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reuss, R.H., Chalamala, B.R., Moussessian, A., Kane, M.G., Kumar, A., Zhang, D.C., Rogers, J.A., Hatalis, M., Temple, D., Moddel, G., Eliasson, B.J., Estes, M.J., Kunze, J., Handy, E.S., Harmon, E.S., Salzman, D.B., Woodall, J.M., Alam, M.A., Murthy, J.Y., Jacobsen, S.C., Olivier, M., Markus, D., Campbell, P.M., and Snow, E.: Macroelectronics: Perspectives on technology and applications. Proc. IEEE 93, 1239 (2005).CrossRefGoogle Scholar
Sun, Y. and Rogers, J.A.: Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897 (2007).CrossRefGoogle Scholar
Sobajima, S., Okaniwa, H., Takagi, N., Sugiyama, I., and Chiba, K.: Production and properties of transparent electroconductive coating on polyester film. Jpn. J. Appl. Phys. 2(Suppl 2–1), 475 (1974).CrossRefGoogle Scholar
Itoyama, K.: Properties of Sn-doped indium oxide coatings deposited on polyester film by high rate reactive sputtering. J. Electrochem. Soc. 126, 691 (1979).CrossRefGoogle Scholar
Howson, R.P., Avaratsiotis, J.N., Ridge, M.I., and Bishop, C.A.: Properties of conducting transparent oxide films produced by ion plating onto room-temperature substrates. Appl. Phys. Lett. 35, 161 (1979).CrossRefGoogle Scholar
Yang, T.L., Zhang, D.H., Ma, J., Ma, H.L., and Chen, Y.: Transparent conducting ZnO: Al films deposited on organic substrates deposited by r.f. magnetron-sputtering. Thin Solid Films 326, 60 (1998).CrossRefGoogle Scholar
Ott, A.W. and Chang, R.P.H.: Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates. Mater. Chem. Phys. 58, 132 (1999).CrossRefGoogle Scholar
Latella, B.A., Triani, G., Zhang, Z., Short, K.T., Bartlett, J.R., and Ignat, M.: Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates. Thin Solid Films 515, 3138 (2007).CrossRefGoogle Scholar
Zhang, Z.M., Triani, G., and Fan, L.J.: Amorphous to anatase transformation in atomic layer deposited titania thin films induced by hydrothermal treatment at 120 °C. J. Mater. Res. 23, 2472 (2008).CrossRefGoogle Scholar
Chen, Y.C., Yang, C.F., and Hsueh, E.Y.: The application of AZOY transparent conductive oxide film in multifilm-coated polycarbonate optical glasses. J. Electrochem. Soc. 157, H987 (2010).CrossRefGoogle Scholar
Kim, D.: Deposition of indium tin oxide films on polycarbonate substrates by direct metal ion beam deposition. Appl. Surf. Sci. 218, 70 (2003).CrossRefGoogle Scholar
Yamamoto, T., Miyake, A., Yamada, T., Morizane, T., Arimitsu, T., Makino, H., and Yamamoto, N.: Properties of transparent conductive Ga-doped ZnO films on glass, PMMA and COP substrates. IEICE Trans. Electron. E91C, 1547 (2008).CrossRefGoogle Scholar
Kim, H., Horwitz, J.S., Kushto, G.P., Kafafi, Z.H., and Chrisey, D.B.: Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Appl. Phys. Lett. 79, 284 (2001).CrossRefGoogle Scholar
Miyake, A., Yamada, T., Makino, H., Yamamoto, N., and Yamamoto, T.: Properties of highly transparent conductive Ga-doped ZnO films prepared on polymer substrates by reactive plasma deposition with DC arc discharge. J. Photopolym. Sci. Technol. 22, 497 (2009).CrossRefGoogle Scholar
de Carvalho, C.N., Lavareda, G., Fortunato, E., Vilarinho, R., and Amaral, A.: ITO films deposited by rf-PERTE on unheated polymer substrates-properties dependence on In-Sn alloy composition. Mater. Sci. Eng., B 109, 245 (2004).CrossRefGoogle Scholar
Al-Dahoudi, N., Bisht, H., Göbbert, C., Krajewski, T., and Aegerter, M.A.: Transparent conducting, anti-static and anti-static–anti-glare coatings on plastic substrates. Thin Solid Films 392, 299 (2001).CrossRefGoogle Scholar
Aegerter, M.A. and Al-Dahoudi, N.: Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates. J. Sol-Gel Sci. Technol. 27, 81 (2003).CrossRefGoogle Scholar
Langlet, M., Kim, A., Audier, A., Guillard, C., and Herrmann, J.M.: Transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols. Thin Solid Films, 429, 13 (2003).CrossRefGoogle Scholar
Hu, Y. and Yuan, C.: Low-temperature preparation of photocatalytic TiO2 thin films on polymer substrates by direct deposition from anatase sol. J. Mater. Sci. Technol. 22, 239 (2006).Google Scholar
Yang, J.H., Han, Y.S., and Choy, J.H.: TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 495, 266 (2006).CrossRefGoogle Scholar
Su, W., Wang, S., Wang, X., Fu, X., and Weng, J.: Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf. Coat. Technol. 205, 465 (2010).CrossRefGoogle Scholar
Lam, S.W., Soetanto, A., and Amal, R.: Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles. J. Nanopart. Res. 11, 1971 (2009).CrossRefGoogle Scholar
Krebs, F.C.: All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10, 761 (2009).CrossRefGoogle Scholar
Krebs, F.C.: Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93, 465 (2009).CrossRefGoogle Scholar
Königer, T. and Münstedt, H.: Coatings of indium tin oxide nanoparticles on various flexible polymer substrates: Influence of surface topography and oscillatory bending on electrical properties. J. Soc. Inf. Disp. 16, 559 (2008).CrossRefGoogle Scholar
Puetz, J. and Aegerter, M.A.: Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils. Thin Solid Films 516, 4495 (2008).CrossRefGoogle Scholar
Heusing, S., de Oliveira, P.W., Kraker, E., Haase, A., Palfinger, C., and Veith, M.: Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes. Thin Solid Films 518, 1164 (2009).CrossRefGoogle Scholar
Nagayama, H., Honda, H., and Kawahara, H.: A new process for silica coating. J. Electrochem. Soc. 135, 2013 (1988).CrossRefGoogle Scholar
Deki, S., Aoi, Y., Hiroi, O., and Kajinami, A.: Titanium(IV) oxide thin films prepared from aqueous solution. Chem. Lett. 6, 433 (1996).CrossRefGoogle Scholar
Deki, S., Aoi, Y., Yanagimoto, H., Ishii, K., Akamatsu, K., Mizuhata, M., and Kajinami, A.: Preparation and characterization of Au-dispersed TiO2 thin films by a liquid-phase deposition method. J. Mater. Chem. 6, 1879 (1996).CrossRefGoogle Scholar
Shimizu, K., Imai, H., Hirashima, H., and Tsukuma, K.: Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 351, 220 (1999).CrossRefGoogle Scholar
Ou, J., Wang, J., Zhang, D., Zhang, P., Liu, S., Yan, P., Liu, B., and Yang, S.: Fabrication and biocompatibility investigation of TiO2 films on the polymer substrates obtained via a novel and versatile route. Colloids Surf., B 76, 123 (2010).CrossRefGoogle Scholar
Goutailler, G., Guillard, C., Daniele, S., and Hubert-Pfalzgraf, L.G.: Low temperature and aqueous sol-gel deposit of photocatalytic active nanoparticulate TiO2 . J. Mater. Chem. 13, 342 (2003).CrossRefGoogle Scholar
Imai, H., Morimoto, H., Tominaga, A., and Hirashima, H.: Structural changes in sol-gel derived SiO2 and TiO2 films by exposure to water vapor. J. Sol-Gel Sci. Technol. 10, 45 (1997).CrossRefGoogle Scholar
Imai, H. and Hirashima, H.: Preparation of porous anatase coating from sol–gel-derived titanium dioxide and titanium dioxide-silica by water-vapor exposure. J. Am. Ceram. Soc. 82, 2301 (1999).CrossRefGoogle Scholar
Langlet, M., Kim, A., Audier, M., and Herrmann, J.M.: Sol-gel preparation of photocatalytic TiO2 films on polymer substrates. J. Sol-Gel Sci. Technol. 25, 223 (2002).CrossRefGoogle Scholar
Matsuda, A., Kotani, Y., Kogure, K., Tatsumisago, M., and Minami, T.: Transparent anatase nanocomposite films by the sol–gel process at low temperatures. J. Am. Ceram. Soc. 83, 229 (2000).CrossRefGoogle Scholar
Kotani, Y., Matsuda, A., Tasumisago, M., Minami, T., Umezawa, T., and Kogure, T.: Formation of anatase nanocrystals in sol-gel derived TiO2-SiO2 thin films with hot water treatment. J. Sol-Gel Sci. Technol. 19, 585 (2000).CrossRefGoogle Scholar
Matsuda, A., Matoda, T., Kogure, T., Tadanaga, K., Minami, T., and Tatsumisago, M.: Formation of anatase nanocrystals-precipitated silica coatings on plastic substrates by the sol-gel process with hot water treatment. J. Sol-Gel Sci. Technol. 27, 61 (2003).CrossRefGoogle Scholar
Tadanaga, K., Kitamuro, K., Matsuda, A., and Minami, T.: Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method. J. Sol-Gel Sci. Technol. 26, 705 (2003).CrossRefGoogle Scholar
Yamaguchi, N., Tadanaga, K., Matsuda, A., and Minami, T.: Formation of anti-reflective alumina films on polymer substrates by the sol-gel process with hot water treatment. Surf. Coat. Technol. 201, 3653 (2006).CrossRefGoogle Scholar
Hashizume, M. and Hirashima, M.: Sol-gel titania coating on unmodified and surface-modified polyimide films. J. Sol-Gel Sci. Technol. 62, 234 (2012).CrossRefGoogle Scholar
Imai, H., Tominaga, A., Hirashima, H., Toki, M., and Aizawa, M.: Ultraviolet-laser-induced crystallization of sol-gel derived indium oxide films. J. Sol-Gel Sci. Technol. 13, 991 (1998).CrossRefGoogle Scholar
Imai, H., Tominaga, A., Hirashima, H., Toki, M., and Asakumua, N.: Ultraviolet-reduced reduction and crystallization of indium oxide films. J. Appl. Phys. 85, 203 (1999).CrossRefGoogle Scholar
Imai, H., Hirashima, H., and Awazu, K.: Alternative modification methods for sol–gel coatings of silica, titania and silica–titania using ultraviolet irradiation and water vapor. Thin Solid Films 351, 91 (1999).CrossRefGoogle Scholar
Asakuma, N., Fukui, T., Aizawa, M., Toki, M., Imai, H., and Hirashima, H.: Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films. J. Sol-Gel Sci. Technol. 19, 333 (2000).CrossRefGoogle Scholar
Asakuma, N., Fukui, T., Toki, M., and Imai, H.: Low-temperature synthesis of ITO thin films using an ultraviolet laser for conductive coating on organic polymer substrates. J. Sol-Gel Sci. Technol. 27, 91 (2003).CrossRefGoogle Scholar
Kim, Y-H., Heo, J-S., Kim, T-H., Park, S., Yoon, M-H., Kim, K., Oh, M.S., Yi, G-R., Noh, Y-Y., and Park, S.K.: Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128 (2012).CrossRefGoogle ScholarPubMed
Königer, T., Rechtenwald, T., Al-Naimi, I., Frick, T., Schmidt, M., and Münstedt, H.: CO2-laser treatment of indium tin oxide nanoparticle coatings on flexible polyethyleneterephthalate substrates. J. Coat. Technol. Res. 7, 261 (2010).CrossRefGoogle Scholar
Salar Amoli, H. and Fathi, B.: Effect of pulse Nd-YAG laser beam interaction on annealing of nanopowder ITO using spin-on-glass. J. Sol-Gel Sci. Technol. 59, 32 (2011).CrossRefGoogle Scholar
Salar Amoli, H., Shokatian, S., and Abdous, M.: Thermal annealing combination with pulse Nd-YAG laser treatment on ITO on polycarbonate using spin coating process. J. Sol-Gel Sci. Technol. 62, 319 (2012).CrossRefGoogle Scholar
Kim, M-G., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382 (2011).CrossRefGoogle ScholarPubMed
Hennek, J.W., Kim, M-G., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: Exploratory combustion synthesis: Amorphous indium yttrium oxide for thin-film transistors. J. Am. Chem. Soc. 134, 9593 (2012).CrossRefGoogle ScholarPubMed
Kim, M-G., Hennek, J.W., Kim, H.S., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: Delayed ignition of autocatalytic combustion precursors: Low-temperature nanomaterial binder approach to electronically functional oxide films. J. Am. Chem. Soc. 134, 11583 (2012).CrossRefGoogle ScholarPubMed
Kozuka, H., Yamano, A., Fukui, T., Uchiyama, H., Takahashi, M., Yoki, M., and Akase, T.: Large area ceramic thin films on plastics: A versatile route via solution processing. J. Appl. Phys. 111, 016106 (2012).CrossRefGoogle Scholar
Kozuka, H., Uchiyama, H., Fukui, T., and Takahashi, M.: Technique for fabricating ceramic films on substrates of low thermal resistance. Japanese Patent Application, No. 2011-22986.Google Scholar
Kozuka, H., Fuku, T., Takahashi, M., Uchiyama, H., and Tsuboi, S.: Ceramic thin films on plastics: A versatile transfer process for large area as well as patterned coating. ACS Appl. Mater. Interfaces 4, 6415 (2012).CrossRefGoogle ScholarPubMed
Kozuka, H., Uchiyama, H., Fukui, T., and Takahashi, M.: Technique for fabricating ceramic films on substrates of low thermal resistance. Japanese Patent Application, No. 2011-285428.Google Scholar
Tomonaga, H. and Morimoto, T.: Indium-tin oxide coatings via chemical solution deposition. Thin Solid Films 392, 243 (2001).CrossRefGoogle Scholar
Ohyama, M., Kozuka, H., and Yoko, T.: Sol-gel preparation of transparent and conductive Al-doped ZnO films with highly preferential crystal orientation. J. Am. Ceram. Soc. 81, 1622 (1998).CrossRefGoogle Scholar
Ohyama, M., Kozuka, H., and Yoko, T.: Sol-gel preparation of ZnO films with preferential orientation along (002) plane from zinc acetate solution. Thin Solid Films 306, 78 (1997).CrossRefGoogle Scholar
Yamano, A. and Kozuka, H.: Effects of the heat treatment conditions on the crystallographic orientation of Pb(Zr, Ti)O3 thin films prepared by polyvinylpyrrolidone-assisted sol-gel method. J. Am. Ceram. Soc. 90, 3882 (2007).Google Scholar
Yamano, A. and Kozuka, H.: Single-step sol-gel deposition and dielectric properties of 0.4 μm thick, (001) oriented Pb(Zr, Ti)O3 thin films. J. Sol-Gel Sci. Technol. 47, 316 (2008).CrossRefGoogle Scholar
Qi, Y., Jafferis, N.T., Lyons, K. Jr., Lee, C.M., and McAlpine, M.C.: Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 10, 524 (2010).CrossRefGoogle ScholarPubMed
Park, K.I., Xu, S., Liu, Y., Hwang, G.T., Kang, S.J., Wang, Z.L., and Lee, K.J.: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).CrossRefGoogle ScholarPubMed