Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T17:57:01.517Z Has data issue: false hasContentIssue false

Wet chemical synthesis and luminescence properties of erbium-doped nanocrystalline yttrium oxide

Published online by Cambridge University Press:  01 November 2004

Fiorenzo Vetrone
Affiliation:
Department of Chemistry and Biochemistry, Concordia University, Montreal, H4B 1R6, Canada
John-Christopher Boyer
Affiliation:
Department of Chemistry and Biochemistry, Concordia University, Montreal, H4B 1R6, Canada
John A. Capobianco*
Affiliation:
Department of Chemistry and Biochemistry, Concordia University, Montreal, H4B 1R6, Canada
Adolfo Speghini
Affiliation:
Dipartimento Scientifico e Tecnologico, Università di Verona and INSTM, UdR Verona, I-37134 Verona, Italy
Marco Bettinelli
Affiliation:
Dipartimento Scientifico e Tecnologico, Università di Verona and INSTM, UdR Verona, I-37134 Verona, Italy
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The luminescence properties of nanocrystalline Y2O3:Er3+ prepared via wet chemical synthesis were investigated. A broadening of both the reflectance spectrum and 77 K luminescence spectrum (λexc = 488 nm) was observed in the nanocrystalline material compared to bulk Y2O3:Er3+. The spectral broadening was attributed to the presence of Er3+ ions on the surface of the particle, which experienced different crystal fields than the ions buried in the core of the particle. Upconversion was observed in both the bulk and nanocrystal material following excitation with 650-nm or 800-nm radiation. Following excitation with 800-nm radiation, an enhancement of the red (4F9/24I15/2) upconverted emission was observed and occurred as a result of the (4I9/2, 4I11/2) → (4I13/2, 4F9/2) ion-pair process that directly populated the 4F9/2 state. The magnitude of the red enhancement in the nanocrystalline material prepared via wet chemical synthesis was less than that of the identically doped bulk sample and less still than Y2O3:Er3+ nanocrystals prepared via a combustion synthesis technique. An explanation is proposed to account for the drastic difference in the red upconverted luminescence intensity.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Igarashi, T., Ihara, M., Kusunoki, T. and Ohno, K.: Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor. Appl. Phys. Lett. 76, 1549 (2000).CrossRefGoogle Scholar
2Xu, C., Watkins, B.A., Sievers, R.E., Jing, X., Trowga, P., Gibbons, C.S. and Vecht, A.: Submicron-sized spherical yttium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis. Appl. Phys. Lett. 71, 1643 (1997).CrossRefGoogle Scholar
3Hase, T., Kano, T., Nakazawa, E. and Yamamoto, H.: Phosphor materials for cathode-ray tubes. Adv. Electron. Electron Phys. 79, 271 (1990).CrossRefGoogle Scholar
4Shen, Y., Friend, C.S., Jiang, Y., Jakubczyk, D., Swiatkiewicz, J. and Prasad, P.N.: Nanophotonics: Interactions, materials, and applications. J. Phys. Chem. B 104, 7577 (2000).CrossRefGoogle Scholar
5Tissue, B.M.: Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater. 10, 2837 (1998).CrossRefGoogle Scholar
6Vetrone, F., Boyer, J.C. and Capobianco, J.A. in Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, edited by Nalwa, H.S. (American Scientific Publishers, Stevenson Ranch, CA, 2004), p. 725Google Scholar
7Wakefield, G., Holland, E., Dobson, P.J. and Hutchison, J.L.: Luminescence properties of nanocrystalline Y2O3:Eu. Adv. Mater. 13, 1557 (2001).3.0.CO;2-W>CrossRefGoogle Scholar
8Tao, Y., Zhao, G., Zhang, W. and Xia, S.: Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors. Mater. Res. Bull. 32, 501 (1997).Google Scholar
9Tessari, G., Bettinelli, M., Speghini, A., Ajò, D., Pozza, G., Depero, L.E., Allieri, B. and Sangaletti, L.: Synthesis and optical properties on nanosized powders: Lanthanide-doped Y2O3. Appl. Surf. Sci. 144–145, 686 (1999).CrossRefGoogle Scholar
10Sharma, P.K., Jilavi, M.H., Nass, R. and Schmidt, H.: Tailoring the particle size from μm → nm scale by using a surface modifier and their size effect on the fluorescence properties of europium doped yttria. J. Lumin. 82, 187 (1999).CrossRefGoogle Scholar
11Allieri, B., Depero, L.E., Marino, A., Sangaletti, L., Caporaso, L., Speghini, A. and Bettinelli, M.: Growth and microstructural analysis of nanosized Y2O3 doped with rare-earths. Mater. Chem. Phys. 66, 164 (2000).CrossRefGoogle Scholar
12Tanner, P.A. and Sun, R.W.Y.: Use of preformed sols in the synthesis of luminescent lanthanide ion-doped yttria. J. Mater. Sci. 36, 2253 (2001).CrossRefGoogle Scholar
13Yi, G., Sun, B., Yang, F., Chen, D., Zhou, Y. and Cheng, J.: Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: Ytterbium and erbium codoped lanthanum molybdate. Chem. Mater. 14, 2910 (2002).CrossRefGoogle Scholar
14Eilers, H. and Tissue, B.M.: Synthesis of nanophase ZnO, Eu2O3, and ZrO2 by gas-phase condensation with cw-CO2 laser heating. Mater. Lett. 24, 261 (1995).CrossRefGoogle Scholar
15Konrad, A., Fries, T., Gahn, A., Kummer, F., Herr, U., Tidecks, R. and Samwer, K.: Nanocrystalline cubic yttria: Synthesis and optical properties. Chem. Vap. Deposition 5, 207 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
16Konrad, A., Fries, T., Gahn, A., Kummer, F., Herr, U., Tidecks, R. and Samwer, K.: Chemical vapor synthesis and luminescence properties of nanocrystalline cubic Y2O3:Eu. J. Appl. Phys. 86, 3129 (1999).CrossRefGoogle Scholar
17Schmechel, R., Winkler, H., Xaomao, L., Kennedy, M., Kolbe, M., Benker, A., Winterer, M., Fischer, R.A., Hahn, H. and Seggern, H. v.: Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments. Scripta Mater. 44, 1213 (2001).CrossRefGoogle Scholar
18Sharma, P.K., Nass, R. and Schmidt, H.: Effect of solvent, host precursor, dopant concentration, and crystallite size on the fluorescence properties of Eu(III) doped yttria. Opt. Mater. 10, 161 (1998).CrossRefGoogle Scholar
19Wang, J., Song, H., Sun, B., Ren, X., Chen, B. and Xu, W.: Light-induced luminescent enhancement and structural change in cubic nanocrystalline Y2O3:Tb. Chem. Phys. Lett. 379, 507 (2003).CrossRefGoogle Scholar
20Capobianco, J.A., Boyer, J.C., Vetrone, F., Speghini, A. and Bettinelli, M.: Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3. Chem. Mater. 14, 2915 (2002).CrossRefGoogle Scholar
21Vetrone, F., Boyer, J.C., Capobianco, J.A., Speghini, A. and Bettinelli, M.: Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chem. Mater. 15, 2737 (2003).CrossRefGoogle Scholar
22Scheps, R.: Upconversion laser processes. Prog. Quant. Electron. 20, 271 (1996).CrossRefGoogle Scholar
23Polizzi, S., Battagliarin, M., Bettinelli, M., Speghini, A. and Fagherazzi, G.: Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis. J. Mater. Chem. 12, 742 (2002).CrossRefGoogle Scholar
24Capobianco, J.A., Vetrone, F., D’Alesio, T., Tessari, G., Speghini, A. and Bettinelli, M.: Optical spectroscopy of nanocrystalline cubic Y2O3:Er3+ obtained by combustion synthesis. Phys. Chem. Chem. Phys. 2, 3203 (2000).CrossRefGoogle Scholar
25Konrad, A., Fries, T., Gahn, A., Kummer, F., Herr, U., Tidecks, R. and Samwer, K.: Shift of the absorption spectra of undoped and rare earth doped nanocrystalline yttria prepared by chemical vapor synthesis. Mater. Sci. Forum 343–346,494 (2000).CrossRefGoogle Scholar
26Konrad, A., Herr, U., Tidecks, R., Kummer, F. and Samwer, K.: Luminescence of bulk and nanocrystalline cubic yttria. J. Appl. Phys. 90, 3516 (2001).CrossRefGoogle Scholar
27Yamada, N., Shionoya, S. and Kushida, T.: Phonon-assisted energy transfer between trivalent rare earth ions. J. Phys. Soc. Jpn. 32, 1577 (1972).CrossRefGoogle Scholar
28Nakazawa, E. in Phosphor Handbook, edited by Shionoya, S. and Yen, W.M. (CRC Press, Boca Raton, 1999)Google Scholar
29Weber, M.J.: Probabilities for radiative and nonradiative decay of Er3+ in LaF3. Phys. Rev. 157, 262 (1967).CrossRefGoogle Scholar
30Chamarro, M.A. and Cases, R.: Energy up-conversion in (Yb, Ho) and (Yb, Tm) doped fluorohafnate glasses. J. Lumin. 42, 267 (1988).CrossRefGoogle Scholar
31Joubert, M.F.: Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 11, 181 (1999).CrossRefGoogle Scholar
32Capobianco, J.A., Raspa, N., Monteil, A. and Malinowski, M.: Energy transfer upconversion in Gd3Ga5O12:Pr3+. J. Phys.: Condens. Matter 5, 6083 (1993).Google Scholar
33Capobianco, J.A., Vetrone, F., Boyer, J.C., Speghini, A. and Bettinelli, M.: Enhancement of red emission (4F9/24I15/2) via upconversion in bulk and nanocrystalline cubic Y2O3:Er3+. J. Phys. Chem. B 106, 1181 (2002).CrossRefGoogle Scholar
34Chen, X., Nguyen, T., Luu, Q. and Di Bartolo, B.: Concentration dependence of visible up-conversion luminescence in the laser crystal Gd3Ga5O12 doped with erbium. J. Lumin. 85, 295 (2000).CrossRefGoogle Scholar
35Polizzi, S., Fagherazzi, G., Battagliarin, M., Bettinelli, M. and Speghini, A.: Fractal aggregates of lanthanide-doped Y2O3 nanoparticles obtained by propellant synthesis. J. Mater. Res. 16, 146 (2001).CrossRefGoogle Scholar