Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:23:12.107Z Has data issue: false hasContentIssue false

Volume changes in Vitreloy bulk metallic glass during room temperature high-pressure torsion

Published online by Cambridge University Press:  31 January 2011

Zsolt Kovács
Affiliation:
Department of Materials Physics, Eötvös University, Budapest, H-1518, Budapest, Hungary; and School of Electrical, Electronic & Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland
Erhard Schafler
Affiliation:
Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, A-1090 Vienna, Austria
Ádám Révész*
Affiliation:
Department of Materials Physics, Eötvös University, Budapest, H-1518, Budapest, Hungary
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Commercial Zr44Ti11Cu10Ni10Be25 bulk metallic glass (Vitreloy 1b) disk was subjected to extreme plastic deformation by high-pressure torsion at room temperature. Two-dimensional mapping by high-intensity synchrotron x-ray diffraction in the plane of the shear deformation reveals no evidence of nanocrystallization; however, average effective volume changes as a function of the deformation can be evaluated.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 279, 48 2000Google Scholar
2Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004Google Scholar
3Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977CrossRefGoogle Scholar
4Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 1979CrossRefGoogle Scholar
5Kim, J-J., Choi, Y., Suresh, S., Argon, A.S.: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 2002CrossRefGoogle ScholarPubMed
6Jiang, W.H., Atzmon, M.: Mechanically-assisted nanocrystallization and defects in amorphous alloys: A high-resolution transmission-electron-microscopy study. Scr. Mater. 54, 333 2006CrossRefGoogle Scholar
7Yavari, A.R., Moulec, A. Le, Inoue, A., Nishiama, N., Lupu, N., Matsubara, E., Botta, W.J., Vaughan, G., Di Michiel, M., Kvick, A.: Excess free volume in metallic glasses measured by x-ray diffraction. Acta Mater. 53, 1611 2005CrossRefGoogle Scholar
8Das, J., Boström, M., Mattern, N., Kvick, A., Yavari, A.R., Greer, A.L., Eckert, J.: Plasticity in bulk metallic glasses investigated via the strain distribution. Phys. Rev. B: Condens. Matter 76, 92203 2007CrossRefGoogle Scholar
9Poulsen, H.F., Wert, J.A., Neuefeind, J., Honkimaki, V., Daymond, M.: Measuring strain distributions in amorphous materials. Nat. Mater. 4, 33 2005Google Scholar
10Suzuki, Y., Haimovich, J., Egami, T.: Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys. Rev. B: Condens. Matter 35, 2162 1987Google Scholar
11Ott, R.T., Kramer, M.J, Besser, M.F., Sordelet, D.J.: High-energy x-ray measurements of structural anisotropy and excess free volume in a homogenously deformed Zr-based metallic glass. Acta Mater. 54, 2463 2006CrossRefGoogle Scholar
12Kramer, M.J., Ott, R.T., Sordelet, D.J.: Anisotropic atomic structure in a homogeneously deformed metallic glass. J. Mater. Res. 22, 382 2007Google Scholar
13Bei, H., Xie, S., George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 2006CrossRefGoogle Scholar
14Zhang, Y., Wang, W.H., Greer, A.L.: Making metallic glasses plastic by control of residual stresses. Nat. Mater. 5, 857 2006CrossRefGoogle Scholar
15Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 2007Google Scholar
16Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., Hufnagel, C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B: Condens. Matter 64, 180201 2001Google Scholar
17Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 2005CrossRefGoogle ScholarPubMed
18Kovács, Zs., Henits, P., Zhilyaev, A.P., Révész, Á.: Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scr. Mater. 54, 1733 2006CrossRefGoogle Scholar
19Révész, Á., Schafler, E., Kovács, Zs.: Structural anisotropy in a Zr57Ti5Cu20Al10Ni8 bulk metallic glass deformed by high pressure torsion at room temperature. Appl. Phys. Lett. 92, 011910 2008CrossRefGoogle Scholar
20Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., Zhu, Y.T.: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58, 33 2006CrossRefGoogle Scholar
21Peker, A., Johnson, W.L.: A highly processable metallic glass— Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 1993CrossRefGoogle Scholar
22Bakke, E., Busch, R., Johnson, W.L.: The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic-glass forming alloy in the supercooled liquid. Appl. Phys. Lett. 67, 3260 1995CrossRefGoogle Scholar
23Vorhauer, A., Pippan, R.: On the homogeneity of deformation by high pressure torsion. Scr. Mater 51, 921 2004CrossRefGoogle Scholar
24Hammersley, A., Svensson, S.O., Thompson, A.: Calibration and correction of spatial distortions in 2D detector systems. Accel. Spectrom. Detect. Assoc. Equip 346, 312 1994CrossRefGoogle Scholar