Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T12:59:12.876Z Has data issue: false hasContentIssue false

Viscous Poisson's coefficient determined by discontinuous hot forging

Published online by Cambridge University Press:  31 January 2011

Ruzhong Zuo*
Affiliation:
Institute of Materials Science, University of Technology, Darmstadt Petersenstr. 23, D-64287 Darmstadt, Germany
Emil Aulbach
Affiliation:
Institute of Materials Science, University of Technology, Darmstadt Petersenstr. 23, D-64287 Darmstadt, Germany
Jürgen Rödel
Affiliation:
Institute of Materials Science, University of Technology, Darmstadt Petersenstr. 23, D-64287 Darmstadt, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A high-resolution laser-assisted loading dilatometer was applied for the precise measurement of radial and axial strain rates under different uniaxial loads, using alumina as a model material. As a continuous application of an external load can lead to an anisotropic microstructure, a discontinuous hot forging technique was utilized to determine the viscous Poisson's coefficient. In these studies, samples were presintered to different densities and only then were hot-forging tests performed. The result provides an isotropic viscous Poisson's coefficient, which increases smoothly between 0.21 and 0.42 within the accessible density range. Combined with the uniaxial viscosity measured before using the same technique, the hydrostatic sintering stress, bulk viscosity, and shear viscosity as a function of density are now available for solid-state sintering. A comparison of the experimentally obtained results with several theoretical models is included.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Christensen, R.M., Theory of Viscoelasticity, An Introduction, 2nd ed. (Academic Press, New York, 1982).Google Scholar
2.Scherer, G.W. and Rekhson, S.M., J. Am. Ceram. Soc. 65, 352 (1982).CrossRefGoogle Scholar
3.Riedel, H., Meyer, D., Svoboda, J., and Zipse, H., Int. J. Ref. Met. Hard Mater. 12, 55 (19931994).CrossRefGoogle Scholar
4.Lu, G., Sutterlin, R.C., and Gupta, T.K., J. Am. Ceram. Soc. 76, 1907 (1993).CrossRefGoogle Scholar
5.Kanters, J., Eisele, U., and Rödel, J., J. Am. Ceram. Soc. 84, 2757 (2001).CrossRefGoogle Scholar
6.Bordia, R.K. and Raj, R., J. Am. Ceram. Soc. 68, 287 (1985).CrossRefGoogle Scholar
7.Scherer, G.W. and Garino, T., J. Am. Ceram. Soc. 68(4), 216 (1985).CrossRefGoogle Scholar
8.Stech, M., Reynders, P.R., and Rödel, J., J. Am. Ceram. Soc. 83, 1889 (2000).CrossRefGoogle Scholar
9.de, L.C. Jonghe and Rahaman, M.N., J. Am. Ceram. Soc. 67, C214 (1984).Google Scholar
10.Skorohod, V., Olevsky, E., and Shtern, M., J. Sci. Sintering. 23, 79 (1991).Google Scholar
11.McMeeking, R.M. and Kuhn, L.T., Acta Metall. 40, 961 (1992).CrossRefGoogle Scholar
12.Svoboda, J., Riedel, H., and Zipse, H., Acta Metall. 42, 435 (1994).CrossRefGoogle Scholar
13.Riedel, H., Svoboda, J., and Zipse, H., Acta Metall. 42, 445 (1994).CrossRefGoogle Scholar
14.Parhami, F. and McMeeking, R.M., Mech. Mater. 27, 111 (1998).CrossRefGoogle Scholar
15.Olevsky, E.A., Mater. Sci. Eng. R 23(2), 41 (1998).CrossRefGoogle Scholar
16.Scherer, G.W., J. Non-Cryst. Solids 34, 239 (1979).CrossRefGoogle Scholar
17.Raj, R. and Bordia, R.K., Acta Metall. 32, 1003 (1984).CrossRefGoogle Scholar
18.Venkatachari, K.R. and Raj, R., J. Am. Ceram. Soc. 69, 499 (1986).CrossRefGoogle Scholar
19.Rahaman, M.N., Jonghe, L.C. de, and Brook, R.J.. J. Am. Ceram. Soc. 69, 53 (1986).CrossRefGoogle Scholar
20.Hsueh, C.H., Evans, A.G., and Cannon, R.M., Acta Metall. 34, 927 (1986).CrossRefGoogle Scholar
21.Gregg, R.A. and Rhines, F.N., Metall. Trans. 4(5), 1365 (1973)CrossRefGoogle Scholar
22.de, L.C. Jonghe and Rahaman, M.N., Rev. Sci. Instrum. 55, 2007 (1984).Google Scholar
23.Scherer, G.W., J. Am. Ceram. Soc. 69, C206 (1986).Google Scholar
24.Geguzin, Y., Matsokin, V., Pluzhnikova, D., and Dayad, H., Sov. Powd. Met. 2, 39 (1986).Google Scholar
25.Panda, P.C., Wang, J., and Raj, R., J. Am. Ceram. Soc. 71(12), C-507 (1988).CrossRefGoogle Scholar
26.Cai, P.Z., Messing, G.L., and Green, D.L., J. Am. Ceram. Soc. 82(2), 445 (1997).CrossRefGoogle Scholar
27.Salamone, S.M., Stearns, L.C., Bordia, R.K., and Harmer, M.P., J. Am. Ceram. Soc. 86, 883 (2003).CrossRefGoogle Scholar
28.Bordia, R.K. and Scherer, G.W., Acta Metall. 36, 2393 (1988).CrossRefGoogle Scholar
29.Bordia, R.K. and Scherer, G.W., Acta Metall. 36, 2399 (1988).CrossRefGoogle Scholar
30.Rahaman, M.N., de, L.C. Jonghe, and Hsueh, C.H., J. Am. Ceram. Soc. 69(1), 58 (1986)CrossRefGoogle Scholar
31.Raj, R., J. Am. Ceram. Soc. 65(3), C-46 (1982).CrossRefGoogle Scholar
32.Zuo, R., Aulbach, E., Bordia, R.K., and Rödel, J., J. Am. Ceram. Soc. 86, 1099 (2003).CrossRefGoogle Scholar
33.Rahaman, M.N. and Jonghe, L.C. de, J. Am. Ceram. Soc. 67(10), C205 (1984)CrossRefGoogle Scholar
34.Zuo, R., Aulbach, E., and Rödel, J., Acta Mater. 51, 4561 (2003).CrossRefGoogle Scholar
35.Aulbach, E., Zuo, R., and Rödel, J., Exp. Mech. (in press, 2003).Google Scholar
36.Mikeska, K.R., Scherer, G.W., and Bordia, R.K., Ceram. Trans. 7, 200 (1990).Google Scholar