Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T05:38:23.219Z Has data issue: false hasContentIssue false

Vanadium (IV) benzenedicarboxylate: A novel adsorbent for selective separations

Published online by Cambridge University Press:  31 January 2011

A.J. Jacobson*
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204-5003
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The crystal structure of VOBDC (BDC = 1,4-benzenedicarboxylate) has a 1-dimensional channel system with apertures of ∼8 Å, and shows remarkable flexibility upon adsorption/desorption of various guest molecules in the channels. VOBDC can selectively and rapidly adsorb organic molecules containing sulfur on exposure to a 5% CH4/He stream with different contents of thiophene or dimethyl sulfide at ambient temperature. Selective uptake of thiophene from liquid octane with thiophene concentrations from 2000 ppmw down to 100 ppmw is also observed. X-ray crystallographic data show that the adsorbed thiophene molecules adopt a herringbone packing arrangement within the channels of VOBDC while adsorbed dimethyl sulfide molecules are disordered among several positions in the channels with the sulfur atoms pointing toward the channel walls. The observed adsorptive capacities for thiophene and dimethyl sulfide are 155 mg and 208 mg sulfur per gram of VOBDC, respectively, consistent with the crystal structure data.

Type
Outstanding Symposium Paper
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alptekin, G.O., DeVoss, S., Dubovik, M., and Monroe, J.: Sorbents for desulfurization of natural gas, LPG and transportation fuels, in Proceedings of the Fuel Cell Seminar (2004), p. 864.Google Scholar
2Velu, S., Ma, X., and Song, C.: Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents. Ind. Eng. Chem. Res. 42, 5293 (2003)CrossRefGoogle Scholar
3Ma, X., Sun, L., and Song, C.: A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel-cell applications. Catal. Today 77, 107 (2002)CrossRefGoogle Scholar
4Ma, X., Zhou, A., and Song, C.: A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption. Catal. Today 123, 276 (2007)CrossRefGoogle Scholar
5Yang, R.T., Hernandez-Maldonado, A.J., and Yang, F.H.: Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301, 79 (2003)CrossRefGoogle ScholarPubMed
6Hernandez, A.J.-Maldonado, Qi, G., and Yang, R.T.: Desulfurization of commercial fuels by p-complexation: Monolayer CuCl/g-Al2O3. Appl. Catal., B 61, 212 (2005)CrossRefGoogle Scholar
7Shan, J., Liu, X., Yue, J., and Yao, H.: Progress of deep desulfurization for transportation fuels by adsorption. Chem. Ind. Eng. Prog. 26, 651 (2007)Google Scholar
8Nie, Y., Li, C., Meng, H., and Wang, Z.: Recent advancement on deep desulfurization of gasoline and diesel oil. Contemp. Chem. Ind. 35, 409 (2006)Google Scholar
9Sun, Z., Yu, M., Zhang, X., and Chen, H.: Technology of desulfurization of thiophene-type sulfide in oil. Chem. Ind. Eng. Prog. 24, 1002 (2005)Google Scholar
10Kitagawa, S., Kitaura, R., and Noro, S.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334 (2004)CrossRefGoogle ScholarPubMed
11Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., and Pastre, J.: Metal-organic frameworks—Prospective industrial applications. J. Mater. Chem. 16, 626 (2006)CrossRefGoogle Scholar
12Alaerts, L., Kirshock, E.A.C., Maes, M., van der Veen, M.A., Finsy, V., Depla, A., Martens, J.A., Baron, G.V., Jacobs, P.A., Denayer, J.F.M., and Vos, D.E. De: Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed. 46, 4293 (2007)CrossRefGoogle ScholarPubMed
13Barthelet, K., Marrot, J., Riou, D., and Férey, G.: A breathing hybrid organic- inorganic solid with very large pores high magnetic characteristics. Angew. Chem. Int. Ed. 41, 281 (2002)3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
14Bourrelly, S., Llewellyn, P.L., Serre, C., Millange, F., Loiseau, T., and Férey, G.: Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 127, 13519 (2005)CrossRefGoogle ScholarPubMed
15Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N.A., Maurin, G., Llewellyn, P.L., Daturi, M., Filinchuk, Y., Leynaud, O., Barnes, P., and Férey, G.: An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption. Adv. Mater. 19, 2246 (2007)CrossRefGoogle Scholar
16Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., and Férey, G.: Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)[C24] {O2C-C6H4-CO2}[C24]{HO2C-C6H4-CO2H}x[C24]H2Oy. J. Am. Chem. Soc. 124, 13519 (2002)CrossRefGoogle Scholar
17Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., and Férey, G.: A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373 (2004)CrossRefGoogle ScholarPubMed
18Anokhina, E.V., Vougo-Zanda, M., Wang, X., and Jacobson, A.J.: In(OH)BDC.0.75BDCH2 (BDC = benzenedicarboxylate), a hybrid inorganic-organic vernier structure. J. Am. Chem. Soc. 127, 15000 (2005)CrossRefGoogle Scholar
19Vougo-Zanda, M., Huang, J., Anokhina, E.V., Wang, X., and Jacobson, A.J.: Tossing and turning: Guests in the flexible frameworks of metal(III) dicarboxylates. Inorg. Chem. 47, 11535 (2008)CrossRefGoogle ScholarPubMed
20Wang, X., Liu, L., and Jacobson, A.J.: Intercalation of organic molecules into vanadium(IV) benzenedicarboxylate: Adsorbate structure and selective absorption of organosulfur compounds. Angew. Chem. Int. Ed. 45, 1 (2006)CrossRefGoogle ScholarPubMed
21Jacobson, A.J., Wang, X., and Liu, L.: Selective adsorption of hydrocarbons by metal organic frameworks. U.S. Patent No. 60/836806 (2006).Google Scholar
22Suezawa, H., Yoshida, T., Umezawa, Y., Tsuboyama, S., and Nishio, M.: CH/p interactions implicated in the crystal structure of transition metal compounds—A database study. Eur. J. Inorg. Chem. 2002, 3148 (2002)3.0.CO;2-X>CrossRefGoogle Scholar
23Morgado, C.A., McNamara, J.P., Hillier, I.H., Burton, N.A., and Vincent, M.A.: Density functional and semiempirical molecular orbital methods including dispersion corrections for the accurate description of noncovalent interactions involving sulfur-containing molecules. J. Chem. Theory Comput. 3, 1656 (2007)CrossRefGoogle ScholarPubMed