Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:22:01.950Z Has data issue: false hasContentIssue false

Validated measurement of Young's modulus, Poisson ratio, and thickness for thin coatings by combining instrumented nanoindentation and acoustical measurements

Published online by Cambridge University Press:  03 March 2011

N.M. Jennett
Affiliation:
NPL Materials Centre, National Physical Laboratory, Teddington, United Kingdom
G. Aldrich-Smith
Affiliation:
NPL Materials Centre, National Physical Laboratory, Teddington, United Kingdom
A.S. Maxwell
Affiliation:
NPL Materials Centre, National Physical Laboratory, Teddington, United Kingdom
Get access

Abstract

Nanoindentation is one of the very few techniques that can measure both the elastic and plastic properties of very small volumes of materials. Recently it has been shown that the properties of thin coatings can be determined by nanoindentation, even when the normal indentation response includes a significant component due to the substrate. This paper takes the method a step further and shows how by combining acoustical test methods with nanoindentation, a validated set of values for the thickness, Young's modulus, and Poisson ratio for a coating can be obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
2. BS EN ISO 14577: 2002 parts 1–3, Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters (International Organization for Standardization, Geneva, Switzerland).Google Scholar
3. European report, INDICOAT SMT-CT98-2249, NPL Report MATC (A) 24 (National Physical Laboratory, Middlesex, U.K., 2001).Google Scholar
4. ASTM E 1876-99, Standard Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration (American Society for Testing and Materials, West Conshohocken, PA).Google Scholar
5. ASTM C 1259-98, Standard Method for Dynamic Young’s Modulus, Shear Modulus and Poisson’s Ratio for Advanced Ceramics by Impulse Excitation of Vibration (American Society for Testing and Materials, West Conshohocken, PA).Google Scholar
6.Sanchette, F., Sanchette, S., Billard, A., Lepage, J., Nivoit, M. and Frantz, C., Revue de Metallurgie 96 259 (1999).CrossRefGoogle Scholar
7.Moussu, F. and Nivoit, M., J. Sound Vib. 165 149 (1993).CrossRefGoogle Scholar
8.Hess, P., Physics Today 55 42 (2002).CrossRefGoogle Scholar
9.Hurley, D.C., Tewary, V.K. and Richards, A.J., Meas. Sci. Technol. 12 1486 (2001).CrossRefGoogle Scholar
10.Hurley, D.C., Tewary, V.K. and Richards, A.J., Thin Solid Films 398–399 326 (2001).CrossRefGoogle Scholar
11.Tewary, V.K., J. Acoust. Soc. Am. 112(3 pt 1) 925 (2002).CrossRefGoogle Scholar
12.Schneider, D. and Schwarz, Th., Surf. Coat. Technol. 91 136 (1997).CrossRefGoogle Scholar
13.Schneider, D., Schwarz, Th., Scheibe, H-J. and Panzner, M., Thin Solid Films 295 107 (1997).CrossRefGoogle Scholar
14.Schneider, D., Meyer, C.F., Mai, H., Schöneich, B., Ziegele, H., Scheibe, H.J. and Lifshitz, Y., Diam. Relat. Mat. 7 973 (1998).CrossRefGoogle Scholar
15.Jennett, N.M. and Bushby, A.J. in Thin Films: Stress and Mechanical Properties IX, edited by Ozkan, C.S., Freund, L.B., Cammarata, R.C., and Gao, H. (Proc. Mater. Res. Soc. Symp. Proc. 695, Warrendale, 2002) pp. 7377.Google Scholar
16.Farnell, G.W. and Adler, E.L. in Physical Acoustics, edited by Mason, W.P. and Thurston, R.N. (Academic Press, New York, 1972), Vol. IX, pp. 35126.Google Scholar
17.Kral, C., Lengauer, W., Rafaja, D. and Ettmayer, P., J. Alloys Compd. 265 215 (1998).CrossRefGoogle Scholar
18.Meng, W.J. and Eesley, G.L., Thin Solid Films 271 108 (1995).CrossRefGoogle Scholar
19.Schneider, D., Ollendorf, H. and Schwarz, Th., Appl. Phys. A 61 277 (1995).CrossRefGoogle Scholar
20.Pang, W., Every, A.G., Comins, J.D., Stoddart, P.R. and Zhang, X., J. Appl. Phys. 86 311 (1999).CrossRefGoogle Scholar
21.Robert, L., Brunet, N., Flaherty, T., Randles, T., Matthaei-Schulz, E., Vetters, H., Rats, D. and Von Stebut, J., Surf. Coat. Technol. 119 327 (1999).CrossRefGoogle Scholar