Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T08:01:39.876Z Has data issue: false hasContentIssue false

Use of the solvent chemistry for the control of the critical thickness of PbTiO3 ultrathin films

Published online by Cambridge University Press:  31 January 2011

Roberto Fernández
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
Susana Holgado
Affiliation:
Escuela Politécnica Superior, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
Zhaorong Huang
Affiliation:
Department of Materials, School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
Jesús Ricote*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The preparation of high-quality ferroelectric PbTiO3-based ultrathin films by chemical solution deposition, using a diol-based sol-gel method, has proved to be successful. However, there is a critical thickness below which the films break up into isolated structures. According to previous studies, above a certain grain size to thickness ratio a microstructural instability occurs and the coatings are no longer continuous. We explore the use of the solvent chemistry to control this phenomenon, as an alternative to the more conventional variation of the crystallization parameters. The use of diols with short C chain lengths leads to films with smaller grain sizes, whose critical thicknesses are lower. A reduction from 40 to 15 nm is achieved by reducing the number of C of the diol used from 5 to 2. A critical value of G/t < 5.0 is necessary to obtain continuous ultrathin films with the processing conditions used.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ekinci, K.L.Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1, 786 (2005)CrossRefGoogle ScholarPubMed
2.Woo, J., Hong, S., Min, D.K., Shin, H., No, K.Effect of domain structure on thermal stability of nanoscale ferroelectric domains. Appl. Phys. Lett. 80, 4000 (2002)CrossRefGoogle Scholar
3.Park, M., Hong, S., Kim, J., Kim, Y., Bühlmann, S., Kim, Y.K., No, K.Piezoresponse force microscopy studies of PbTiO3 thin films grown via layer-by-layer gas phase reaction. Appl. Phys. Lett. 94, 092901 (2009)CrossRefGoogle Scholar
4.Scott, J.F.Applications of modern ferroelectrics. Science 315, 954 (2007)CrossRefGoogle ScholarPubMed
5.Shaw, T.M., Trolier-McKinstry, S., McIntyre, P.C.The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263 (2000)CrossRefGoogle Scholar
6.Roelofs, A., Schneller, T., Szot, K., Waser, R.Towards the limit of ferroelectric nanosized grains. Nanotechnology 14, 250 (2003)CrossRefGoogle Scholar
7.Junquera, J., Ghosez, Ph.Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 (2003)CrossRefGoogle ScholarPubMed
8.Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C.Ferroelectricity in ultrathin perovskite films. Science 303, 1650 (2004)CrossRefGoogle Scholar
9.Schwartz, R.W., Schneller, T., Waser, R.Chemical solution deposition of electronic oxide films. C.R. Chim. 7, 433 (2004)CrossRefGoogle Scholar
10.Tybell, T., Ahn, C.H., Triscone, J.M.Ferroelectricity in thin perovskite films. Appl. Phys. Lett. 75, 856 (1999)CrossRefGoogle Scholar
11.Drezner, Y., Nitzani, M., Berger, S.Piezoelectric ultrathin BaTiO3 films. Appl. Phys. Lett. 86, 042906 (2005)CrossRefGoogle Scholar
12.Kim, Y.S., Do, J.Y., Kim, D.J., Chang, Y.J., Lee, J.H., Noh, T.W., Song, T.K., Yoon, J.G., Chung, J.S., Balk, S.I., Kim, Y.W., Jung, C.U.Ferroelectric properties of SrRuO3/BaTiO3/SrRuO3 ultrathin film capacitors free from passive layers. Appl. Phys. Lett. 88, 072909 (2006)CrossRefGoogle Scholar
13.Doyle, A.M., Rupprechter, G., Pfänder, N., Schlögl, R., Kirschhok, C.E.A., Martens, J.A., Freund, H-J.Ultra-thin zeolite films prepared by spin-coating Silicalite-1 precursor solutions. Chem. Phys. Lett. 382, 404 (2003)CrossRefGoogle Scholar
14.Hardy, A., Van Elshocht, S., D’Haen, J., Douthéret, O., De Gendt, S., Adelmann, C., Caymax, M., Conard, T., Witters, T., Bender, H., Richard, O., Heyns, M., D’Olieslaeger, M., Van Bael, M.K., Mullens, J.Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films. J. Mater. Res. 22, 3484 (2007)CrossRefGoogle Scholar
15.Kijima, T., Ishiwara, H.Si-substituted ultrathin ferroelectric films. Jpn. J. Appl. Phys., Part 2 41, L716 (2002)CrossRefGoogle Scholar
16.González, A., Jiménez, R., Mendiola, J., Alemany, C., Calzada, M.L.Ultrathin ferroelectric strontium bismuth tantalate films. Appl. Phys. Lett. 81, 2599 (2002)CrossRefGoogle Scholar
17.Celinska, J., Joshi, V., Narayan, S., McMillan, L., Paz de Araujo, C.A.Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films. Appl. Phys. Lett. 82, 3937 (2003)CrossRefGoogle Scholar
18.Brennecka, G.L., Tuttle, B.A.Fabrication of ultrathin film capacitors by chemical solution deposition. J. Mater. Res. 22, 2868 (2007)CrossRefGoogle Scholar
19.Ricote, J., Holgado, S., Ramos, P., Calzada, M.L.Piezoelectric ultrathin lead titanate films prepared by deposition of aquo-diol solutions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 53, 2299 (2006)CrossRefGoogle ScholarPubMed
20.Ricote, J., Holgado, S., Huang, Z., Ramos, P., Fernández, R., Calzada, M.L.Fabrication of continuous ultrathin films ferroelectric films by chemical solution deposition methods. J. Mater. Res. 23, 2787 (2008)CrossRefGoogle Scholar
21.Sigman, J., Brennecka, G.L., Clem, P.G., Tuttle, B.A.Fabrication of perovskite-based high-value integrated capacitors by chemical solution deposition. J. Am. Ceram. Soc. 91, 1851 (2008)CrossRefGoogle Scholar
22.Miller, K.T., Lange, F.F., Marshall, D.B.The instability of polycrystalline thin films: Experiment and theory. J. Mater. Res. 5, 151 (1990)CrossRefGoogle Scholar
23.Seifert, A., Vojta, A., Speck, J.S., Lange, F.F.Microstructural instability in single-crystal thin films. J. Mater. Res. 11, 1470 (1996)CrossRefGoogle Scholar
24.Zhao, L., Chien, A.T., Lange, F.F., Speck, J.S.Microstructural development of BaTiO3 powders synthesized by aqueous methods. J. Mater. Res. 11, 1325 (1996)CrossRefGoogle Scholar
25.Lee, W.T., Salje, E.K.H., Dove, M.T.Effect of surface relaxations on the equilibrium growth morphology of crystals: Platelet formation. J. Phys. Condens. Matter 11, 7385 (1999)CrossRefGoogle Scholar
26.Langjahr, P.A., Wagner, T., Rühle, M., Lange, F.F.Thermally induced structural changes in epitaxial SrZrO3 films on SrTiO3. J. Mater. Res. 14, 2945 (1999)CrossRefGoogle Scholar
27.Dawber, M., Szafraniak, I., Alexe, M., Scott, J.F.Self-patterning of arrays of ferroelectric capacitors: Description by theory of substrate mediated strain interactions. J. Phys. Condens. Matter 15, L667 (2003)CrossRefGoogle Scholar
28.Phillips, N.J., Calzada, M.L., Milne, S.J.Sol-gel-derived lead titanate films. J. Non-Cryst. Solids 147–148, 285 (1992)CrossRefGoogle Scholar
29.Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J., Baro, A.M.WSxM: A software for scanning-probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)CrossRefGoogle Scholar
30.Nanoscale Characterisation of Ferroelectric Materials: Scanning Probe Microscopy Approach edited by M. Alexe andA. Gruverman (Springer-Verlag, Berlin 2003)Google Scholar
31.Huang, Z.Combining Ar ion milling with FIB lift-out techniques to prepare high quality site-specific TEM samples. J. Microsc. 215, 219 (2004)CrossRefGoogle ScholarPubMed
32.Tu, Y.L., Calzada, M.L., Phillips, N.J., Milne, S.J.Synthesis and electrical characterization of thin films of PT and PZT made from a diol-based sol-gel route. J. Am. Ceram. Soc. 79, 441 (1996)CrossRefGoogle Scholar
33.Calzada, M.L., Sirera, R.Chemically derived ferroelectric calcium modified lead titanate thin films deposited from aquo-diol-solvent solutions. J. Mater. Sci. 7, 39 (1996)Google Scholar