Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T11:18:11.299Z Has data issue: false hasContentIssue false

Ultrathin oxide films: Epitaxy at the two-dimensional limit

Published online by Cambridge University Press:  16 October 2017

Thomas Obermüller
Affiliation:
Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, Graz A-8010, Austria
Nassar Doudin
Affiliation:
Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, Graz A-8010, Austria
David Kuhness
Affiliation:
Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, Graz A-8010, Austria
Svetlozar Surnev
Affiliation:
Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, Graz A-8010, Austria
Falko P. Netzer*
Affiliation:
Surface and Interface Physics, Institute of Physics, Karl-Franzens University Graz, Graz A-8010, Austria
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The epitaxial growth of two-dimensional oxide layers on metal surfaces is examined in view of the 1949 van der Merwe proposition that epitaxy requires a pseudomorphic monolayer. It is argued that this limitation is relaxed in the 2-D case and that ordered oxide phases can grow out of a variety of interface scenarios, ranging from pseudomorphic to incommensurate. Prototypical examples of binary and ternary oxides supported on noble metal surfaces are presented, and the structural peculiarities of 2-D oxide phases are emphasized. The usually strong coupling at the oxide–metal interface leads to the stabilization of novel structure concepts that are not encountered in the, respective, bulk phases. The structural flexibility of 2-D lattices is discussed, and their ability to accommodate strain in generating novel 2-D oxide phases is emphasized. In the case of weakly coupled systems, it is reported that more subtle interactions at the interface can create periodic nanoscale morphologies and particular growth patterns in subsequent layers.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Johan Brand Malherbe

References

REFERENCES

Frank, F.C. and van der Merwe, J.H.: One-dimensional dislocations I + II. Proc. R. Soc. London, Ser. A 198, 205216 (1949).Google Scholar
Bauer, E.: Phänomenologische Theorie der Kristallabscheidung an Oberflächen I + II. Z. Kristallogr. 110, 372395 (1958).Google Scholar
Bauer, E.: Epitaxy of metals on metals. Appl. Surf. Sci. 11/12, 479 (1982).CrossRefGoogle Scholar
Netzer, F.P. and Surnev, S.: Structure concepts in two-dimensional oxide materials. In Oxide Materials at the Two-dimensional Limit, Netzer, F.P. and Fortunelli, A., eds.; Springer Series in Materials Science, Vol. 234 (Springer International Publishing, Cham, Switzerland, 2016); p. 1.CrossRefGoogle Scholar
Butler, S.Z., Hollen, S.M., Cao, L., Cui, Y., Gupta, J.A., Gutierrez, H.R., Heinz, T.F., Hong, S.S., Huang, J., Ismach, A.F., Johnston-Halperin, E., Kuno, M., Plashnitsa, V.V., Robinson, R.D., Ruoff, R.S., Salahuddin, S., Shan, J., Shi, L., Spencer, M.D., Terrones, M., Windl, W., and Goldberger, J.E.: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 4, 2898 (2013).CrossRefGoogle Scholar
Service, R.F.: Beyond graphene. Science 348, 490 (2015).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Mishchenko, A., Cavalho, A., and Castro Neto, A.H.: 2D materials and van der Waals heterostructures. Science 353, 461 (2016).CrossRefGoogle Scholar
Ajayan, P., Kim, P., and Banerjee, K.: Two-dimensional van der Waals materials. Phys. Today 69, 38 (2016).Google Scholar
Netzer, F.P., Allegretti, F., and Surnev, S.: Low-dimensional oxide nanostructures on metals: Hybrid systems with novel properties. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 28, 1 (2010).Google Scholar
Kim, J., Bondarchuk, O., Kay, B.D., White, J.M., and Dohnalek, Z.: Preparation and characterization of monodispersed WO3 nanoclusters on TiO2(110). Catal. Today 120, 186 (2007).CrossRefGoogle Scholar
Li, Z., Zhang, Z., Kim, Y.K., Smith, R.S., Netzer, F., Kay, B.D., Rousseau, R., and Dohnalek, Z.: Growth of ordered ultrathin tungsten oxide films on Pt(111). J. Phys. Chem. C 115, 5773 (2011).CrossRefGoogle Scholar
Rousseau, R., Dixon, D.A., Kay, B.D., and Dohnalek, Z.: Dehydration, dehydrogenation, and condensation of alcohols on supported oxide catalysts based on cyclic (WO3)3 and (MoO3)3 clusters. Chem. Soc. Rev. 43, 7664 (2014).CrossRefGoogle Scholar
Thomas, I.O. and Fortunelli, A.: Analysis of the electronic structure of ultrathin NiO/Ag(100) films. Eur. Phys. J. B 75, 5 (2010).Google Scholar
Valeri, S., Altieri, S., Di Bona, A., Luches, P., Giovanardi, C., and Moia, T.S.: Thickness-dependent strain in epitaxial MgO layers on Ag(001). Surf. Sci. 507–510, 311 (2002).CrossRefGoogle Scholar
Müller, F., De Masi, R., Reinicke, D., Steiner, P., Hüfner, S., and Stowe, K.: Epitaxial growth of MnO/Ag(001) films. Surf. Sci. 520, 158 (2002).CrossRefGoogle Scholar
Hagendorf, C., Shantyr, R., Meine, K., Schindler, K-M., and Neddermeyer, H.: Scanning tunneling microscopy and spectroscopy investigation of the atomic and electronic structure of CoO islands on Ag(001). Surf. Sci. 532–535, 346 (2003).CrossRefGoogle Scholar
Steurer, W., Allegretti, F., Surnev, S., Barcaro, G., Sementa, L., Negreiros, F., Fortunelli, A., and Netzer, F.P.: Metamorphosis of ultrathin Ni oxide nanostructures on Ag(100). Phys. Rev. B 84, 115446 (2011).CrossRefGoogle Scholar
Steurer, W., Surnev, S., Fortunelli, A., and Netzer, F.P.: Scanning tunneling microscopy imaging of NiO(100)1 × 1 islands embedded in Ag(100). Surf. Sci. 606, 803 (2012).CrossRefGoogle Scholar
Surnev, S., Fortunelli, A., and Netzer, F.P.: Structure-property relationships and chemical aspects of oxide-metal hybrid nanostructures. Chem. Rev. 113, 4314 (2013).Google Scholar
Doudin, N., Kuhness, D., Blatnik, M., Barcaro, G., Negreiros, F.R., Sementa, L., Fortunelli, A., Surnev, S., and Netzer, F.P.: Nanoscale domain structure and defects in a 2-D WO3 layer on Pd(100). J. Phys. Chem. C 120, 28682 (2016).CrossRefGoogle Scholar
Doudin, N.: Fabrication and characterization of ternary oxide nanostructures on single crystal metal surfaces. Ph.D. thesis, University of Graz, Graz, Austria, 2016.Google Scholar
Franchini, C., Li, F., Surnev, S., Podloucky, R., Allegretti, F., and Netzer, F.P.: Tailor-made ultrathin manganese oxide nanostripes: “Magic” widths on pd(1 1 N) terraces. J. Phys.: Condens. Matter 24, 042001 (2012).Google Scholar
Janaky, C., Rajeshwar, K., de Tacconi, N.R., Chanmanee, W., and Huda, M.N.: Tungsten-based semiconductors for solar hydrogen generation. Catal. Today 199, 53 (2013).CrossRefGoogle Scholar
Chang, Y., Braun, A., Deangelis, A., Kaneshiro, J., and Gaillard, N.: Effect of thermal treatment on the crystallographic, surface energetics, and photoelectrochemical properties of reactively cosputtered Cu tungstate for water splitting. J. Phys. Chem. C 115, 25490 (2011).CrossRefGoogle Scholar
Yourey, J.E. and Bartlett, B.M.: Electrochemical deposition and photochemistry of CuWO4, a promising photoanode for water oxidation. J. Mater. Chem. 21, 7651 (2011).Google Scholar
Yourey, J.E., Kurtz, J.B., and Bartlett, B.M.: Water oxidation on a CuWO4–WO3 composite electrode in the presence of [Fe(CN)6]3−: Toward solar Z scheme water splitting at zero bias. J. Phys. Chem. C 116, 3200 (2012).CrossRefGoogle Scholar
Denk, M., Kuhness, D., Wagner, M., Surnev, S., Negreiros, F.R., Sementa, L., Barcaro, G., Vobornik, I., Furtunelli, A., and Netzer, F.P.: Metal tungstates at the ultimate two-dimensional limit: Fabrication of a CuWO4 nanophase. ACS Nano 4, 3947 (2014).CrossRefGoogle Scholar
Kuhness, D.: Synthesis of low dimensional ternary oxide FeWO x and MnWO x nanostructures on single crystal metal surfaces. Ph.D. thesis, University of Graz, Graz, Austria, 2015.Google Scholar
Pomp, S., Kuhness, D., Barcaro, G., Sementa, L., Mankad, V., Fortunelli, A., Sterrer, M., Netzer, F.P., and Surnev, S.: Two-dimensional iron tungstate: A ternary oxide layer with honeycomb geometry. J. Phys. Chem. C 120, 7629 (2016).CrossRefGoogle ScholarPubMed
Obermüller, T.: Growth of transition metal oxides in 2-D layers: Probing and tuning the properties of matter at the atomic scale. Ph.D. thesis, University of Graz, Graz, Austria, 2015.Google Scholar
Barcaro, G., Thomas, I.O., and Fortunelli, A.: Validation of density-functional versus density-functional + U approaches for oxide ultrathin films. J. Chem. Phys. 132, 124703 (2010).Google Scholar
Ma, L., Doudin, N., Surnev, S., Barcaro, G., Sementa, L., Fortunelli, A., and Netzer, F.P.: Lattice strain defects in a ceria nanolayer. J. Phys. Chem. Lett. 7, 1303 (2016).Google Scholar
Wagner, M., Negreiros, F.R., Sementa, L., Barcaro, G., Surnev, S., Fortunelli, A., and Netzer, F.P.: Nanostripe pattern of NaCl layers on Cu(110). Phys. Rev. Lett. 110, 216101 (2013).Google Scholar
Pacchioni, G.: Two-dimensional oxides: Multifunctional materials for advanced technologies. Chem. – Eur. J. 18, 10144 (2012).CrossRefGoogle ScholarPubMed
Lorenz, M., Ramachandra Rao, M.S., Venkatesan, T., Fortunato, E., Barquinha, P., Barquinho, R., Salgueiro, D., Martins, R., Carlos, E., Liu, A., Shan, F.K., Grundmann, M., Boschker, H., Mukherjee, J., Priyadarshini, M., Das Gupta, N., Rogers, D.J., Teherani, F.T., Sandana, E.V., Bove, P., Rietwyk, K., Zaban, A., Veziridis, A., Weidenkaff, A., Muralidhar, M., Murakami, M., Abel, S., Fompeyrine, J., Zuniga-Perez, J., Ramesh, R., Spaldin, N.A., Ostanin, S., Borisov, V., Mertig, I., Lazenka, V., Srinivasan, G., Prellier, W., Uchida, M., Kawasaki, M., Pentcheva, R., Gegenwart, P., Miletto Grazozio, F., Fontcuberta, J., and Pryds, N.: The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D: Appl. Phys. 49, 433001 (2016).Google Scholar
Schaefer, A., Zielasek, V., Schmidt, Th., Sandell, A., Schowalter, M., Seifarth, O., Walle, L.E., Schulz, Ch., Wollschläger, J., Schroeder, T., Rosenauer, A., Falta, J., and Bäumer, M.: Growth of praseodymium oxide on Si(111) under oxygen-deficient conditions. Phys. Rev. B 80, 045414 (2009).CrossRefGoogle Scholar