Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T07:54:23.180Z Has data issue: false hasContentIssue false

Ultra-high vacuum chemical vapor deposition and in situ characterization of titanium oxide thin films

Published online by Cambridge University Press:  31 January 2011

Jiong-Ping Lu
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Rishi Raj
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Get access

Abstract

Chemical vapor deposition (CVD) of titanium oxide films has been performed for the first time under ultra-high vacuum (UHV) conditions. The films were deposited through the pyrolysis reaction of titanium isopropoxide, Ti(OPri)4, and in situ characterized by x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). A small amount of C incorporation was observed during the initial stages of deposition, through the interaction of precursor molecules with the bare Si substrate. Subsequent deposition produces pure and stoichiometric TiO2 films. Si–O bond formation was detected in the film-substrate interface. Deposition rate was found to increase with the substrate temperature. Ultra-high vacuum chemical vapor deposition (UHV-CVD) is especially useful to study the initial stages of the CVD processes, to prepare ultra-thin films, and to investigate the composition of deposited films without the interference from ambient impurities.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Eckertova, L., Physics of Thin Films, 2nd ed. (Plenum Press, New York, 1986).Google Scholar
2.Chopra, K. L. and Kaur, I., Thin Film Device Applications (Plenum Press, New York, 1983).CrossRefGoogle Scholar
3.VLSI Technology, edited by Sze, S. M., 2nd ed. (McGraw-Hill, New York, 1988).Google Scholar
4.Hunsperger, R. G., Integrated Optics: Theory and Technology, 2nd ed. (Springer-Verlag, Berlin, 1984).Google Scholar
5.Deposition Techniques for Films and Coatings, edited by Bunshah, R. F. (Noyes Publications, Park Ridge, NJ, 1982).Google Scholar
6.Kern, W. and Ban, V. S., in Thin Film Processes, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1978).Google Scholar
7.Woodruff, D. P. and Delchar, T. A., Modern Techniques of Surface Science (Cambridge University Press, Cambridge, 1986).Google Scholar
8.Williams, L. M. and Hess, D. W., J. Vac. Sci. Technol. Al, 1810 (1983).Google Scholar
9.Ritter, E., Phys. Thin Film 8, 1 (1975).Google Scholar
10.Burns, G. P., J. Appl. Phys. 65, 2095 (1989).CrossRefGoogle Scholar
11.Ghoshtagore, R. N. and Noreika, A. J., J. Electrochem. Soc. 117, 1310 (1970).CrossRefGoogle Scholar
12.Ghoshtagore, R. N., J. Electrochem. Soc. 117, 529 (1970).Google Scholar
13.Fredriksson, E. and Carlsson, J. O., J. Vac. Sci. Technol. A4, 2706 (1986).Google Scholar
14.Hass, G., Vacuum 2, 331 (1952).Google Scholar
15.Yeung, K. S. and Lam, Y. W.,Thin Solid Films 109, 169 (1983).CrossRefGoogle Scholar
16.Hovel, H. J., J. Electrochem. Soc. 125, 983 (1978).CrossRefGoogle Scholar
17.Fitzgibbons, E. T., Sladek, K. J., and Hartwig, W. H., J. Electrochem. Soc. 119, 735 (1972).CrossRefGoogle Scholar
18.Hardee, K. L. and Bard, A. J., J. Electrochem. Soc. 122, 739 (1975).CrossRefGoogle Scholar
19.Fuyuki, T. and Matsunami, H., Jpn. J. Appl. Phys. 25, 1288 (1986).CrossRefGoogle Scholar
20.Balog, M., Schieber, M., Patai, S., and Michman, M., J. Cryst. Growth 17, 298 (1972).CrossRefGoogle Scholar
21.Siefering, K. L. and Griffin, G. L., J. Electrochem. Soc. 137, 814 (1990).CrossRefGoogle Scholar
22.Chang, H. L. M., Parker, J. C., You, H., Xu, J. J., and Lam, D. J., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 343.Google Scholar
23.Takahashi, Y., Tsuda, K., Sugiyama, K., Minoura, H., Markino, D., and Tsuiki, M., J. Chem. Soc. Faraday Trans. 77, 1051 (1981).CrossRefGoogle Scholar
24.Handbook of X-ray Photoelectron Spectroscopy, edited by Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., and Muilenberg, G. E., Perkin-Elmer, Eden Prairie, 1979.Google Scholar
25.Davis, L. E., MacDonald, N. C., Palmberg, P. W., Riach, G. E., and Weber, R. E., Handbook of Auger Electron Spectroscopy, 2nd ed., Perkin-Elmer, Eden Prairie, 1978.Google Scholar
26.Rao, C. N. R., Sarma, D. D., Vasudevan, S., and Hegde, M. S., Proc. R. Soc. London A367, 239 (1979).Google Scholar
27.Eriken, S. and Egdell, R. G., Surf. Sci. 180, 263 (1987).CrossRefGoogle Scholar
28.Vurens, G. H., Salmeron, M., and Somorjai, G. A., Progress in Surf. Sci. 32, 333 (1990).CrossRefGoogle Scholar
29.Xu, F., Hill, D. M., Benning, P. J., and Weaver, J. H., J. Vac. Sci. Technol. A7, 2593 (1989).Google Scholar
30.Williams, K. J., Salmeron, M., Bell, A. T., and Somorjai, G. A., Surf. Sci. 204, L745 (1988).CrossRefGoogle Scholar
31.Seah, M.P. and Dench, W.A., Surf. Interf. Anal. 1, 2 (1979).Google Scholar