Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T09:09:24.875Z Has data issue: false hasContentIssue false

Ultrabroad infrared luminescences from Bi-doped alkaline earth metal germanate glasses

Published online by Cambridge University Press:  31 January 2011

Jinjun Ren*
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China; and Graduate School of the Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Jianrong Qiu
Affiliation:
State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China
Botao Wu
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China; and Graduate School of the Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Danping Chen
Affiliation:
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report on ultrabroad infrared (IR) luminescences covering the 1000–1700-nm wavelength region, from Bi-doped 75GeO2–20RO–5Al2O3–1Bi2O3(R = Sr, Ca, and Mg) glasses. The full width at half-maximum of the IR luminescences excited at 980 nm increases (315 → 440 → 510 nm) with the change of alkaline earth metal (Mg2+→ Ca2+→ Sr2+). The fluorescence lifetime of the glass samples is 1725, 157, and 264 μs when R is Sr, Ca, and Mg, respectively. These materials may be promising candidates for broad-band fiber amplifiers and tunable laser resources.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamada, M., Ono, H.Ohishi, Y.: Low-noise, broadband Er3+-doped. Electron. Lett. 34, 1490 1998CrossRefGoogle Scholar
2Suzuki, T.Ohishi, Y.: Broadband 1400 nm emission from Ni2+in zinc–alumino–silicate glass. Appl. Phys. Lett. 84, 3804 2004CrossRefGoogle Scholar
3Suzuki, T., Murugan, G.S.Ohishi, Y.: Optical properties of transparent Li2O–Ga2O3–SiO2glass-ceramics embedding Ni-doped nanocrystals. Appl. Phys. Lett. 86, 131903 2005CrossRefGoogle Scholar
4Tanabe, S.Feng, X.: Temperature variation of near-infrared emission from Cr4+in aluminate glass for broadband telecommunication. Appl. Phys. Lett. 77, 818 2000CrossRefGoogle Scholar
5Fujimoto, Y.Nakatsuka, M.: Infrared luminescence from bismuth-doped silica glasses. Jpn. J. Appl. Phys. Part 2 40, L279 2001CrossRefGoogle Scholar
6Peng, M., Qiu, J., Chen, D., Meng, X.Zhu, C.: Broadband infrared luminescence from: Li2O-Al2O3-ZnO-SiO2glasses doped with Bi2O3. Opt. Express 13, 6892 2005CrossRefGoogle ScholarPubMed
7Meng, X., Qiu, J., Peng, M., Chen, D., Zhao, Q., Jiang, X.Zhu, C.: Near infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. Opt. Express 13, 1635 2005CrossRefGoogle ScholarPubMed
8Meng, X., Qiu, J., Peng, M., Chen, D., Zhao, Q., Jiang, X.Zhu, C.: Near infrared broadband emission of bismuth-doped aluminophosphate glass. Opt. Express 13, 1628 2005CrossRefGoogle ScholarPubMed
9Peng, M., Qiu, J., Chen, D., Meng, X.Zhu, C.: Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses. Opt. Lett. 30, 2433 2005CrossRefGoogle ScholarPubMed
10Suzuki, T.Ohishi, Y.: Ultrabroadband near-infrared emission from Bi-doped Li2O–Al2O3–SiO2glass. Appl. Phys. Lett. 88, 191912 2006CrossRefGoogle Scholar
11Ren, J., Yang, L., Qiu, J., Chen, D., Jiang, X.Zhu, C.: Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses. Solid State Commun. 140, 38 2006CrossRefGoogle Scholar
12Fujimoto, Y.Nakatsuka, M.: Optical amplification in bismuth-doped silica glass. Appl. Phys. Lett. 82, 3325 2003CrossRefGoogle Scholar
13Retoux, R., Studer, F., Michel, C., Raveau, B., Fontaine, A.Dartyge, E.: Valence state for bismuth in the superconducting bismuth cuprates. Phys. Rev. B: Condens. Matter 41, 193 1990CrossRefGoogle ScholarPubMed
14Salem-Sugui, S. Jr., Alp, E.E., Mini, S.M., Ramanathan, M., Campuzano, J.C., Jennings, G.Faiz, M.: Determination of the local structure in Ba1-xKxBiO3by x-ray-absorption spectroscopy. Phys. Rev. B: Condens. Matter 43(7), 5511 1991CrossRefGoogle ScholarPubMed
15Kumada, N., Takahashi, N., Kinomura, N.Sleight, A.W.: Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3. J. Solid State Chem. 126, 121 1996CrossRefGoogle Scholar
16Duffy, J.A.Ingram, M.D.: An interpretation of glasses chemistry in terms of the optical basicity concept. J. Non-Cryst. Solids 21, 373 1976CrossRefGoogle Scholar
17Feltz, A.Morr, A.: Redox reactions in condensed oxide systems: III. Glass formation and properties in the Bi2O3–P2O5system. J. Non-Cryst. Solids 74, 313 1985CrossRefGoogle Scholar
18Blasse, G., Meijerink, A., Nomes, M.Zuidema, J.: Unusual bismuth luminescence in strontium tetraborate (SrB4O7: Bi). J. Phys. Chem. Solids 55, 171 1994CrossRefGoogle Scholar
19Fockele, M., Ahlers, F.J.Lohse, F.: Optical properties of atomic thallium centers in alkali halides. J. Phys. C: Solid State Phys. 18, 1963 1985CrossRefGoogle Scholar
20Fockele, M., Lohse, F.Spaeth, J-M.: Identification and optical properties of axial lead centers in alkaline-earth fluorides. J. Phys.: Condens. Matter 1, 13 1989Google Scholar