Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T21:03:13.486Z Has data issue: false hasContentIssue false

Two interferometric methods for the mechanical characterization of thin films by bulging tests. Application to single crystal of silicon

Published online by Cambridge University Press:  31 January 2011

E. Bonnotte
Affiliation:
Laboratoire de Mécanique Appliquée R. Chaléat, UA CNRS, UFR Sciences et Techniques, 24 chemin de l'Epitaphe, 25030 Besancon Cedex, France
P. Delobelle
Affiliation:
Laboratoire de Mécanique Appliquée R. Chaléat, UA CNRS, UFR Sciences et Techniques, 24 chemin de l'Epitaphe, 25030 Besancon Cedex, France
L. Bornier
Affiliation:
Laboratoire de Mécanique Appliquée R. Chaléat, UA CNRS, UFR Sciences et Techniques, 24 chemin de l'Epitaphe, 25030 Besancon Cedex, France
B. Trolard
Affiliation:
Laboratoire d'Optique, UA CNRS, UFR Sciences et Techniques, Route de Gray, La Bouloie, 25030 Besancon Cedex, France
G. Tribillon
Affiliation:
Laboratoire d'Optique, UA CNRS, UFR Sciences et Techniques, Route de Gray, La Bouloie, 25030 Besancon Cedex, France
Get access

Abstract

Two optical methods are presented for the mechanical characterization of thin films, namely real time holographic interferometry and a fringe projection method called “contouring.” These two methods are coupled to the interferometry by the phase measurements, thus allowing the displacement field to be measured at all points on the membrane. We discuss the solutions retained in terms of their precision and sensitivity. These methods are then applied to membrane bulging tests, a type of test that is widely used in micro-mechanical studies. The measurements are performed on silicon single crystal and the results are compared to the solutions calculated by finite element methods. In both cases, the good agreement between theory and experiments allows the experimental apparatus to be validated.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Recherches en microtechniques: réalités et perspectives, Collection du livre vert (Institut des Microtechniques et Cetehor, Janvier 1992).Google Scholar
2.Minotti, P. and Bonnotte, E., “Un aperçu des problèmes posés par la conception des microactionneurs”, Les Entretiens de la Technologie, 3ême Edition, 15–16 mars (Paris, 1994).Google Scholar
3.Tabata, O., Kawabata, K., Sugiyama, S., and Igarashi, I., Sens. Actuators 20 135 (1989).CrossRefGoogle Scholar
4.Lin, P. and Senturia, S. D., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), p. 41.Google Scholar
5.Small, K. M. and Nix, W. D., J. Mater. Res. 7, 1553 (1992).CrossRefGoogle Scholar
6.Vlassak, J. J. and Nix, W. D., J. Mater. Res. 7, 3242 (1992).CrossRefGoogle Scholar
7.Tribillon, G., Trolard, B., Delobelle, P., Bonnotte, E., and Bornier, L., European Symp. on Optics for Prod. in Manufacturing (Stuttgart, 20–24 June 1994).Google Scholar
8.Hardwick, D. A., Thin Solid Films 153, 109 (1987).CrossRefGoogle Scholar
9.Doerner, M. F. and Nix, W. D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988).CrossRefGoogle Scholar
10.Vest, C. M., Holography Interferometry (Wiley and Sons, New York, 1979).Google Scholar
11.Smigielski, P., Holographie Industrielle (Teknea, 1994).Google Scholar
12.Chambard, J. P., Le traitement des images interférométriques, Holo 3 (Tours, Novembre 1994).Google Scholar
13.De Groot, P., European Symp. on Optics for Prod. in Manufacturing (Stuttgart, 20–24 June 1994).Google Scholar
14.Schwider, J., Falkenstorfer, O., Schreiber, H., Zoller, A., and Streibl, N., Opt. Eng. 32, 1883 (1983).CrossRefGoogle Scholar
15.Hariharan, P., Oreb, B. F., and Eiju, T., Appl. Opt. 26, 2504 (1987).CrossRefGoogle Scholar
16.Brophy, C. P., J. Opt. Soc. Am. 7, 537 (1990).CrossRefGoogle Scholar
17.Trolard, B., Thèse Université de Franche-Comté (Besançon, 1996).Google Scholar
18.Bonnotte, E., “Etude des propriétés mécaniques des films minces. Application au silicium monocristallin”, Thèse Université de Franche-Comté (Besançon, 1994).Google Scholar
19.Timoshenko, S. and Woinowsky-Krieger, S., Théorie des plaques et coques, Librairie Polytechnique (1961).Google Scholar
20.Brantley, W. A., J. Appl. Phys. 44, 534 (1973).CrossRefGoogle Scholar
21.Manceau, J. F., Robert, L., Bastien, F., Oytana, C., and Biwersi, S., J. Micro Electromechanical Systems 5, 4, 243249 (1996).CrossRefGoogle Scholar
22.Jaccodine, R. J. and Schlegel, W. A., J. Appl. Phys. 37, 2429 (1966).CrossRefGoogle Scholar
23.Stoney, G. G., Proc. Roy. Soc. London Sci. A 82, 172 (1909).Google Scholar
24.Röll, K., J. Appl. Phys. 47, 3224 (1976).CrossRefGoogle Scholar
25.Jou, J. H. and Li Hsu, , J. Appl. Phys. 69, 1384 (1991).CrossRefGoogle Scholar
26.Timoshenko, S., Théorie de la stabilité élastique, Librairie Polytechnique (1947).Google Scholar
27.Ambrée, P., Kreller, F., Wolf, R., and Wandel, K., J. Vac. Sci. Technol. B11 (3), 614 (1993).CrossRefGoogle Scholar
28.Bonnotte, E., Robert, L., Delobelle, P., Bornier, L., Trolard, B., Tribillon, G., and Mairey, D., EUROPTO Series, SPIE 2782, 685 (1996).Google Scholar