Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:55:13.210Z Has data issue: false hasContentIssue false

Tunable electrical properties of polystyrene/gold core-shell structure by in situ metallization of cationic gold complex on selective ion-exchange sites

Published online by Cambridge University Press:  31 January 2011

Jun-Ho Lee
Affiliation:
Polymer Technology Institute, Sungkyunkwan University, Jangan-gu,Suwon, 440-746, South Korea
Hyoukryeol Choi
Affiliation:
School of Mechanical Engineering, Sungkyunkwan University, Jangan-gu, Suwon, 440-746, South Korea
Jae-Do Nam*
Affiliation:
Department of Polymer Science and Engineering, Sungkyunkwan University, Jangan-gu, Suwon, 440-746, South Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Gold-coated polystyrene (PS) beads were fabricated by an in situ metallization route involving a cationic-gold complex with a controlled amount of sulfonic acid groups formed on the PS bead surface. The interaction ratio of SO3 to [Au(phen)Cl2]+ may be estimated to be 2.4, which means that 2.4 sulfonated groups will interact with one gold cationic ligand based on geometric considerations. A modeling methodology was developed to predict the mechanical deformation, conductivity, and contact surface area of a spherical bead under compression.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A., Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959 1998CrossRefGoogle Scholar
2.Velev, O.D., Kaler, E.W.: In situ assembly of colloidal particles into miniaturized biosensors. Langmuir. 15, 3693 1999CrossRefGoogle Scholar
3.Han, M., Gao, X., Su, J.Z., Nie, S.: Quantum-dot tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631 2001Google Scholar
4.Wang, D., Salgueirińo-Maceira, V., Liz-Marzán, L.M., Caruso, F.: Gold–silica inverse opals by colloidal crystal templating. Adv. Mater. 14, 908 2002Google Scholar
5.Durovic, B., Puzzo, C.A., Spelt, J.K.: Analysis of thermal warpage in a PCB with an array of PTH connectors. IEEE Trans. Compon. Packag. Tech. 22, 414 1999Google Scholar
6.Baldwin, D.F.: Fundamentals of IC Assembly in Fundamentals of Microsystems Packaging edited by R.R. Tummala McGraw-Hill New York 2001 4568Google Scholar
7.Prucker, O., Rühe, J.: Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 31, 592 1998Google Scholar
8.Oldenburg, S.J., Averitt, R.D., Westcott, S.L., Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243 1998CrossRefGoogle Scholar
9.Liang, Z., Susha, A.S., Caruso, F.: Metallodielectric opals of layer-by-layer processed coated colloids. Adv. Mater. 14, 1160 2002Google Scholar
10.Fredrich, J., Kühn, G., Mix, R., Unger, W.: Formation of plasma polymer layers with functional groups of different type and density at polymer surfaces and their interaction with Al atoms. Plasma Process. Polym. 1, 28 2004Google Scholar
11.Wang, P-H.: Initiation of surface graft polymerization by ceric ions on polymer microspheres. J. Appl. Polym. Sci. 88, 936 2003CrossRefGoogle Scholar
12.Gao, S.L., Häßler, R., Mäder, E., Bahners, T., Opwis, K., Schollmeyer, E.: Photochemical surface modification of PET by excimer UV lamp irradiation. Appl. Phys. B: Lasers O. 81, 681 2005Google Scholar
13.Gibson, H.W., Bailey, F.C.: Chemical modification of polymers.13. Sulfonation of polystyrene surfaces. Macromolecules 13, 34 1980Google Scholar
14.Han, T-H., Kim, D.O., Lee, Y-K., Suh, S-J., Jung, H.C., Oh, Y-S., Nam, J-D.: Gold nanostructures formed in ionic clusters of perfluorinated ionomer. Macromol. Rapid Commun. 27, 1483 2006Google Scholar
15.Daniel, M-C., Astuc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293 2004Google Scholar
16.Lee, J-H., Nam, J-D., Choi, H.R., Jung, K., Jeon, J.W., Lee, Y.K., Kim, J., Tak, Y.: Water uptake and migration effects of electroactive ion-exchange polymer metal composite (IPMC) actuator. Sens. Actuators A Phys. 118, 98 2005CrossRefGoogle Scholar
17.Sudol, E.D., El-Aasser, M.S., Vanderhoff, J.W.: Kinetics of successive seeding of monodisperse polystyrene latexes. II. Azo initiators with and without inhibitors. J. Polym. Sci. Part Polym. Chem. 24, 3515 1985Google Scholar
18.Paine, A.J., Luymers, W., Mcnulty, J.: Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules 23, 3104 1990Google Scholar
19.Fisher, S., Kunin, R.: Routine exchange capacity determinations of ion-exchange resins. Anal. Chem. 27, 1191 1955Google Scholar
20.Messori, L., Abbate, F., Marcon, G., Orioli, P., Fontani, M., Mini, E., Mazzei, T., Carotti, S., O'Connerll, T., Zanello, P.: Gold(III) complexes as potential antitumor agents: Solution chemistry and cytotoxic properties of some selected gold(III) compounds. J. Med. Chem. 43, 3541 2000Google Scholar
21.Robert, K.: Ion Exchange Resins. edited by R.E. Krieger Huntington New York 1972 102Google Scholar
22.Weiss, A., Fitzgerald, J.J.: Structure and Properties of Ionomers edited by M. Pineri, A. Eisengerg Springer, Dordrecht Netherlands 1987 205Google Scholar
23.Cao, G.: Nanostructures and Nanomaterials Imperial College Press London, UK 2004 52Google Scholar
24.Atanacio, A.J., Latella, B.A., Barbé, C.J., Swain, M.V.: Mechanical properties and adhesion characteristics of hybrid sol-gel thin films. Surf. Coat. Technol. 192, 354 2005Google Scholar
25.Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 1986CrossRefGoogle Scholar
26.Saha, R., Nix, W.D.: Effect of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 2002Google Scholar
27.Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng., R. 36, 1 2002Google Scholar
28.Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. (London) A. 324, 301 1971Google Scholar
29.Tatara, Y.: On compression of rubber elastic sphere over a large range of displacements—Part 1: Theoretical study. J. Eng. Mater. Technol. 111, 285 1991Google Scholar
30.Vergeles, M., Maritan, A., Koplik, J., Banavar, J.R.: Adhesion of solids. Phys. Rev. E: Stat. Phys. 56, 2626 1997CrossRefGoogle Scholar
31.Hertz, H.Z.: On the contact of solid elastomer purifying. Körper Reine Angewandte Math 92, 156 1882Google Scholar
32.Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582 1940Google Scholar
33.Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Phil. Trans. R. Soc. 241, 379 1948Google Scholar
34.Fang, F., Zhang, Y.F.: DC electrical conductivity of Au nanoparticle/chloroform and toluene suspensions. J. Mater. Sci. 40, 2979 2005CrossRefGoogle Scholar