Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T00:28:07.089Z Has data issue: false hasContentIssue false

Transport properties of hydrogenated ZnO microwires

Published online by Cambridge University Press:  09 August 2013

Israel Lorite*
Affiliation:
Division of Superconductivity and Magnetism, Institute for experimental Physics II, Fakultät für Physik und Geowissenschaften, 04103 Leipzig, Germany
Pablo Esquinazi
Affiliation:
Division of Superconductivity and Magnetism, Institute for experimental Physics II, Fakultät für Physik und Geowissenschaften, 04103 Leipzig, Germany
Cecilia Zapata
Affiliation:
Laboratorio de Física del Sólido, Dpto. de Física, FCEyT, Universidad Nacional de Tucumán, 4000 Tucumán, Argentina
Silvia P. Heluani
Affiliation:
Laboratorio de Física del Sólido, Dpto. de Física, FCEyT, Universidad Nacional de Tucumán, 4000 Tucumán, Argentina
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have studied the magnetoresistance (MR) of hydrogen plasma-treated pure ZnO wires of tens of micrometer diameter at different temperatures. A negative MR of 1% at 8 T applied field is measured for all wires at 4 K, independent of the temperature (300 K … 773 K) used during the hydrogen treatment. However, a positive MR develops, the higher the treatment temperature. The MR can be explained with a semiempirical model taking into account local magnetic moments and the sd exchange interaction. These results together with field anisotropy in the MR indicate the appearance of magnetic order due to the hydrogen treatment in agreement with recently published reports on the influence of hydrogen in bulk ZnO single crystals. Hydrogen doping may provide a way to trigger defect-induced magnetism in small oxide structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Duplock, E.J., Scheffler, M., and Lindan, P.J.D.: Hallmark of perfect graphite. Phys. Rev. Lett. 92, 225502–1–4 (2004).CrossRefGoogle Scholar
Assadi, M.H.N., Zhang, Y.B., and Li, S.: Hydrogen multicenter bond mediated magnetism in co doped ZnO. J. Phys. Condens. Matter 22, 156001 (2010).CrossRefGoogle ScholarPubMed
Sanchez, N., Gallego, S., Cerdá, J., and Muñoz, M.C.: Tuning surface metallicity and ferromagnetism by hydrogen adsorption at the polar ZnO(0001) surface. Phys. Rev. B 81, 115301 (2010).CrossRefGoogle Scholar
Liu, E.Z. and Jiang, J.Z.: Magnetism of O-terminated ZnO(0001) with adsorbates. J. Phys. Chem. C 113, 16116 (2009).CrossRefGoogle Scholar
Assadi, M.H.N., Zheng, R.K., Li, S., and Ringer, S.R.: First-principles investigation of electrical and magnetic properties of ZnO based diluted magnetic semiconductors codoped with H. J. Appl. Phys. 111, 113901 (2012).CrossRefGoogle Scholar
Ohldag, H., Esquinazi, P., Arenholz, E., Spemann, D., Rothermel, M., Setzer, A., and Butz, T.: The role of hydrogen in room-temperature ferromagnetism at graphite surfaces. New J. Phys. 12, 123012 (2010).CrossRefGoogle Scholar
Barzola-Quiquia, J., Böhlmann, W., Esquinazi, P., Schadewitz, A., Ballestar, A., Dusari, S., Schultze-Nobre, L., and Kersting, B.: Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment. Appl. Phys. Lett. 98, 192511 (2011).CrossRefGoogle Scholar
Singhal, R.K., Samariya, A., Kumar, S., Xing, Y.T., Deshpande, U.P., Shripathi, T., and Baggio-Saitovitch, E.: Defect-induced reversible ferromagnetism in hydrogenated ZnO: Co. J. Magn. Magn. Mater. 322, 2187 (2010).CrossRefGoogle Scholar
Lee, H-J., Park, C.H., Jeong, S-Y., Yee, K-J., Cho, C.R., Jung, M-H., and Chadi, D.J.: Hydrogen-induced ferromagnetism in ZnO: Co. Appl. Phys. Lett. 88, 062504 (2006).CrossRefGoogle Scholar
Zhang, H., Qin, S., Cao, Y., Yang, Z., Si, L., Zhong, W., Wu, D., Xu, M., and Xu, Q.: Enhanced room temperature ferromagnetism in hydrogenated Zn0.98Mn0.02O. Appl. Surf. Sci. 271, 421423 (2013).CrossRefGoogle Scholar
Stoneham, M.: The strange magnetism of oxides and carbons. J. Phys. Condens. Matter 22, 074211 (2010).CrossRefGoogle ScholarPubMed
Yazyev, O.V.: Emergence of magnetism in graphene materials and nanostructures. Rep. Prog. Phys. 73, 056501 (2010).CrossRefGoogle Scholar
Volnianska, O. and Boguslawski, P.: Magnetism of solids resulting from spin polarization of p orbitals. J. Phys. Condens. Matter 22, 073202 (2010).CrossRefGoogle ScholarPubMed
Ogale, S.B.: Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 22, 31253155 (2010).CrossRefGoogle ScholarPubMed
Khalid, M., Esquinazi, P., Spemann, D., Anwand, W., and Brauer, G.: Hydrogen-mediated ferromagnetism in ZnO single crystals. New J. Phys. 13(6), 063017 (2011).CrossRefGoogle Scholar
Khalid, M. and Esquinazi, P.: Hydrogen-induced ferromagnetism in ZnO single crystals investigated by magnetotransport. Phys. Rev. B 85, 134424 (2012).CrossRefGoogle Scholar
Liang, W., Yuhas, B.D., and Yang, P.: Magnetotransport in Co-doped ZnO nanowires. Nano Lett. 9, 892896 (2009).CrossRefGoogle ScholarPubMed
Cote, P.J. and Meisel, L.V.: Resistivity in amorphous and disordered crystalline alloys. Phys. Rev. Lett. 39, 102 (1977).CrossRefGoogle Scholar
Xu, Q., Hartmann, L., Schmidt, H., Hochmuth, H., Lorenz, M., Schmidt-Grund, R., Sturm, C., Spemann, D., Grundmann, M., and Liu, Y.: Magnetoresistance and anomalous Hall effect in magnetic ZnO films. J. Appl. Phys. 101, 063918 (2007).CrossRefGoogle Scholar
Khosla, R.P. and Fischer, J.R.: Magnetoresistance in degenerate CdS: Localized magnetic moments. Phys. Rev. B 2, 40844097 (1970).CrossRefGoogle Scholar
Tian, Y-F., Li, Y-F., and Wu, T.: Tuning magnetoresistance and exchange coupling in ZnO by doping transition metals. Appl. Phys. Lett. 99, 222503 (2011).CrossRefGoogle Scholar
He, M., Tian, Y.F., Springer, D., Putra, I.A., Xing, G.Z., Chia, E.E.M., Cheong, S.A., and Wu, T.: Polaronic transport and magnetism in Ag-doped ZnO. Appl. Phys. Lett. 99, 222511 (2011).CrossRefGoogle Scholar