Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T06:53:13.051Z Has data issue: false hasContentIssue false

Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering

Published online by Cambridge University Press:  03 March 2011

Rachman Chaim*
Affiliation:
Department of Materials Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
Zhijian Shen
Affiliation:
Department of Inorganic Chemistry, BRIIE Center for Inorganic Interfacial Engineering, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
Mats Nygren
Affiliation:
Department of Inorganic Chemistry, BRIIE Center for Inorganic Interfacial Engineering, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We investigated superfast densification of nanocrystalline MgO powders by spark plasma sintering (SPS) between 700 °C and 825 °C under applied pressures of 100and 150 MPa. Fully-dense transparent nanocrystalline MgO with a 52-nm average grain size was fabricated at 800 °C and 150 MPa for 5 min. In-line transmissionsof 40% and 60% were measured compared to MgO single crystal, for the yellowand red wavelengths, respectively. Densification occurs by particles sliding over each other; the nanometric grain size and pores lead to the optical transparency. The light brownish color of the nanocrystalline MgO is due to the oxygen vacancy color centers, originating from the reducing atmosphere of the SPS process.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cheng, J., Agrawal, D., Zhang, Y. andRoy, R.: Microwave sintering of transparent alumina. Mater. Lett. 56, 587 (2002).CrossRefGoogle Scholar
2.Ikesue, A. andKamata, T.: Fabrication of transparent Ce–Y2O3 ceramics using a HIP. J. Ceram. Soc. Jpn. 103, 1155 (1995).CrossRefGoogle Scholar
3.Shaw, N.J.: Densification and coarsening during solid state sintering of ceramics: A review of the models; I. Densification. Powder Metall. Inter. 21, 16 (1989).Google Scholar
4.Zhu, H. andAverback, R.S.: Sintering of nano-particle powders: Simulation and experiments. Mater. Manuf. Processes 11, 905 (1996).CrossRefGoogle Scholar
5.Groza, J.R. andDowding, R.J.: Nanoparticulate materials densification. Nanostruct. Mater. 7, 749 (1996).CrossRefGoogle Scholar
6.Slamovich, E.B. andLange, F.F.: Densification of large pores; II, Driving potentials and kinetics. J. Am. Ceram. Soc. 76, 1584 (1993).CrossRefGoogle Scholar
7.Shih, W.Y., Shih, W-H. andAksay, I.A.: Elimination of an isolated pore: Effect of grain size. J. Mater. Res. 10, 1000 (1995).CrossRefGoogle Scholar
8.Vesteghem, H., Lecomte, A. andDauger, A.: Film formation and sintering of colloidal monoclinic zirconia. J. Non-Cryst. Solids 147–148, 503 (1992).CrossRefGoogle Scholar
9.Srdic, V.V., Winterer, M. andHahn, H.: Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J. Am. Ceram. Soc. 83, 1853 (2000).CrossRefGoogle Scholar
10.Fang, Y., Agrawal, D., Skandan, G. andJain, M.: Fabrication of transluscent MgO ceramics using nanopowders. Mater. Lett. 58, 551 (2004).CrossRefGoogle Scholar
11.Chen, D-J. andMayo, M.J.: Densification and grain growth of ultrafine 3 mol% Y2O3-–ZrO2 ceramics. Nanostruct. Mater. 2, 469 (1993).CrossRefGoogle Scholar
12.Shen, Z., Zhao, Z., Peng, H. andNygren, M.: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature 417, 266 (2002).CrossRefGoogle ScholarPubMed
13.Feng, C., Qiu, H., Guo, J., Yan, D. andSchulze, W.: Fast firing of nanoscale ZrO2 + 2.8 mol% Y2O3 ceramic powder synthesized by the sol-gel process. J. Mater. Synth. Process. 3, 25 (1995).Google Scholar
14.Yoshimura, M., Ohji, T., Sando, M. andNiihara, K.: Rapid rate sintering of nano- grained ZrO2-based composites using pulse electric current sintering method. J. Mater. Sci. Lett. 17, 1389 (1988).CrossRefGoogle Scholar
15.Groza, J.R., Garcia, M. andSchneider, J.A.: Surface effects in field-assisted sintering. J. Mater. Res. 16, 286 (2001).CrossRefGoogle Scholar
16.Kingery, W.D., Bowen, H.K. andUhlmann, D.R.Introduction to Ceramics, 2nd edition (John Wiley & Sons, New York, 1976) p. 648.Google Scholar
17.Tilley, R.J.D.Colour and Optical Properties of Materials (John Wiley & Sons, New York, 2000) p. 32.Google Scholar
18.Apetz, R. andvan Bruggen, M.P.B.: Transparent alumina: A light-scattering model. J. Am. Ceram. Soc. 86, 480 (2003).CrossRefGoogle Scholar
19.van Hulst, H.C. deLight Scattering by Small Particles (Dover, NY, 1981).Google Scholar
20.Peelen, J.G.J. andMetselaar, R.: Light scattering by pores in polycrystalline materials: Transmission properties of alumina. J. Appl. Phys. 45, 216 (1974).CrossRefGoogle Scholar
21.Summers, G.P., Wilson, T.M., Jeffries, B.T., Tohver, H.T., Chen, Y. andAbraham, M.M.: Luminescence from oxygen vacancies in MgO crystals thermodynamically reduced at high temperatures. Phys. Rev. B 27, 1283 (1983).CrossRefGoogle Scholar
22.Jeffries, B.T., Gonzalez, R., Chen, Y. andSummers, G.P.: Luminescence in thermodynamically reduced MgO: The role of hydrogen. Phys. Rev. B 25, 2077 (1982).CrossRefGoogle Scholar
23.Wang, Q.S. andHolzwarth, N.A.W.: Electronic structure of vacancy defects in MgO crystals. Phys. Rev. B 41, 3211 (1990).CrossRefGoogle ScholarPubMed
24.Shaw, N.J.: Densification and coarsening during solid state sintering of ceramics: A review of the models. II, Grain growth. Powder Metall. Inter. 21, 31 (1989).Google Scholar