Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T10:15:26.526Z Has data issue: false hasContentIssue false

Transmission electron microscopy of worn zirconia surfaces

Published online by Cambridge University Press:  31 January 2011

W. M. Rainforth
Affiliation:
Department of Engineering Materials, Mappin Street, University of Sheffield, Sheffield, S1 3JD, United Kingdom
R. Stevens
Affiliation:
School of Materials, University of Bath, Bath, United Kingdom
Get access

Extract

The dry sliding wear behavior of 3 mol% tetragonal zirconia polycrystals (3Y-TZP) and a composite containing 20 vol.% SiC whiskers have been examined by transmission electron microscopy. High wear rates for the TZP were associated with dramatic microstructural changes. The extreme outer ∼ 400 nm consisted of an amorphous surface layer containing both alumina and zirconia. Below this, the t-ZrO2 grain size was an order of magnitude smaller than in the starting material. At a depth of 1–2 μm the tetragonal grains had become elongated, with a maximum aspect ratio of 30 : 1. The first monoclinic zirconia was found at a depth of 5 μm. In contrast, the composite exhibited a wear rate 5 orders of magnitude lower, associated with minor microstructural changes.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Scott, H.G. in Proc. Int. Conf. on Wear of Materials, Vancouver, Canada, 1985 (Am. Soc. of Mech. Eng., New York, 1985), p. 8.Google Scholar
2.Lindberg, L. J., and Richerson, D.W., in Proc. 2nd Int. Conf. on Ce-ram. Mater. and Components for Engines, Lübeck–Travemunde, 1986, p. 20.Google Scholar
3.Yust and Carignan, C., ASLE Trans. 28, 245 (1984).CrossRefGoogle Scholar
4.Gulati, S. T., Hansson, J.N., Helfinstine, J.D., and Malarkey, C. J., Tube International, March, 44 (1985).Google Scholar
5.Hannink, R.H. J., Murray, M. J., and Marmach, M., in Proc. Int. Conf. on Wear of Materials, Reston, VA, April 1983 (Am. Soc. of Mech. Eng., New York, 1983), p. 181.Google Scholar
6.Hannink, R.H. J., Murray, M. J., and Scott, H.G., Wear 100, 355 (1984).Google Scholar
7.Rainforth, W.M. and Stevens, R., Wear 162–164, 322 (1993).CrossRefGoogle Scholar
8.Breznak, J., Breval, E., and Macmillan, N.H., J. Mater. Sci. 20, 4657 (1985).Google Scholar
9.Breval, E., Breznak, J., and Macmillan, N.H., J. Mater. Sci. 21, 931 (1986).Google Scholar
10.Birkby, I., Harrison, P., and Stevens, R., J. Europ. Ceram. Soc. 5, 37 (1989).CrossRefGoogle Scholar
11.Tucci, A. and Esposito, L., Wear 172, 111 (1994).CrossRefGoogle Scholar
12.Lee, W. E. and Rainforth, W.M., Ceramic Microstructures (Chap-man & Hall, London, 1994), p. 317.Google Scholar
13.Swain, M.V. and Hannink, R.H. J., J. Am. Ceram. Soc. 72 1358 (1989).Google Scholar
14.Rainforth, W.M., Stevens, R., and Nutting, J., Proc. lst European Ceramics Conference, edited by deWith, G., Terpstra, R.A., and Metselaar, R., Maastricht, The Netherlands, June 1989 (Elsevier, Amsterdam, 1989), Vol. III, p. 533.Google Scholar
15.Rainforth, W.M. and Stevens, R., Proc. 2nd Conf. on Fractography of Ceramics, edited by Frechette, V.D. and Varner, J.R., Alfred Univ., Alfred, NY, July 1990 (1991), p. 363.Google Scholar
16.Woydt, M. and Habig, K-H., Ceram. Sci. Eng. Proc. 9, 1419 (1988).Google Scholar
17.Woydt, M., Kadoori, J., Habig, K-H., and Hausner, H., J. Europ. Ceram. Soc. 7, 135 (1991).Google Scholar
18.Yang, M. and Stevens, R., J. Mater. Sci. 26, 726 (1991).Google Scholar
19.Rainforth, W.M., Nutting, J., and Stevens, R., Philos. Mag. A 66, 621 (1992).Google Scholar
20.Stoto, T., Nauer, M., and Carry, C., J. Am. Ceram. Soc. 74, 2615 (1991).Google Scholar
21.Anstis, G., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).Google Scholar
22.Lancaster, J.K., Wear 10, 103 (1967).Google Scholar
23.Wallbridge, N., Dowson, D., and Roberts, E.W., in Proc. Int. Conf. on Wear of Materials, Reston, VA, April 1983 (Am. Soc. of Mech. Eng., New York, 1983), p. 202.Google Scholar
24.Lankford, J., Page, R.A., and Rabenberg, L., J. Mater. Sci. 23, 4144 (1988).Google Scholar
25.Ingel, R. P., Rice, R.W., and Lewis, D., J. Am. Ceram. Soc. 65, C108 (1982).Google Scholar
26.Ingel, R. P., Lewis, D., Bender, B.A., and Rice, R.W., J. Am. Ceram. Soc. 65, C150 (1982).Google Scholar
27.Dominguez-Rodriguez, A., Lagerlöf, K. P.D., and Heuer, A.H., J. Am. Ceram. Soc. 69, 281 (1986).Google Scholar
28.Lakki, A., Schaller, R., Nauer, M., and Carry, C., Acta Metall. et Mat. 41, 2845 (1993).Google Scholar
29.Wakai, F. and Nagono, T., J. Mater. Sci. Lett. 7, 607 (1988).Google Scholar
30.Boutz, M.M.R., Winnubst, A. J.A., Burggraaf, A. J., Nauer, M., and Carry, C., J. Europ. Ceram. Soc. 13, 103 (1994).CrossRefGoogle Scholar
31.Nauer, M. and Carry, C., Scripta Met. et Mat. 24, 1459 (1990).CrossRefGoogle Scholar
32.Dimos, D. and Kohlstedt, D. L., J. Am. Ceram. Soc. 70, 531 (1987).Google Scholar
33.Nabarro, F.R.N., Philos. Mag. 16, 231 (1967).Google Scholar
34.Herring, C., J. Appl. Phys. 21, 437 (1950).Google Scholar
35.Cheong, D-S., Dominguez-Rodriguez, A., and Heuer, A.H., Philos. Mag. 63, 377 (1991).CrossRefGoogle Scholar
36.Duclos, R., Crampon, J., and Amana, B., Acta Metall. 37, 877 (1989).Google Scholar
37.Wakai, F., Murayama, N., Sakaguchi, S., Kato, H., and Kuroda, K., in Advances in Ceramics Vol 24: Science and Technology of Zirconia III, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), p. 583.Google Scholar
38.Okamoto, Y., Ieuji, J., Yamada, Y., Hayashi, K., and Nishikawa, T., in Advances in Ceramics Vol 24: Science and Technology of Zirconia III, edited by Sōmiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Westerville, OH, 1988), p. 565.Google Scholar
39.Lankford, J., J. Mater. Sci. 21, 1981 (1986).Google Scholar
40.Hirsch, J., Lücke, K., and Hatherly, M., Acta Metall. 36, 2905 (1988).Google Scholar
41.Perrin, C. and Rainforth, W.M., Wear 181–183, 312 (1995).Google Scholar
42.Koch, C.C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).Google Scholar
43.Ban, T., Okada, K., Hayashi, T., and Otsuka, N., J. Mater. Sci. 27, 465 (1992).Google Scholar
44.Kalonji, G., McKittrick, J., and Hobbs, L.W., in Advances in Ceramics Vol 12: Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A.H. (The American Ceramic Society, Westerville, OH, 1983), p. 816.Google Scholar
45.Claussen, N., Lindemann, G., and Petzow, G., Ceram. Int. 9, 83 (1983).Google Scholar
46.Xiao, H., Ai, X., and Yang, H. S., Wear 148, 171 (1991).Google Scholar