Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:46:40.889Z Has data issue: false hasContentIssue false

Transmission electron microscopy of liquid phase densified SiC

Published online by Cambridge University Press:  31 January 2011

R.W. Carpenter
Affiliation:
Center for Solid State Science, The Arizona State University, Tempe, Arizona 85287
W. Braue
Affiliation:
Center for Solid State Science, The Arizona State University, Tempe, Arizona 85287
Raymond A. Cutler
Affiliation:
Ceramatec, Inc., 2425 South 900 West, Salt Lake City, Utah 84119
Get access

Abstract

Transmission electron microscopy was used to characterize microstructures of SiC densified using a transient liquid phase (resulting from the reaction of Al2O3 with Al4C3) by hot pressing at 1875 °C for 10 min in N2. High resolution electron microscopy showed that the SiC grain boundaries were free of glassy phases, suggesting that all liquid phases crystallized upon cooling. Phases that might be expected due to reactive sintering (i.e., AlN, Al2OC, Al2O3, Al4O4C, Al3O3N, or solid solutions of SiC, AlN, and Al2OC) were not observed. However, significant Al, Si, O, and C concentrations were found at all triple junctions of these rapidly densified ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Prochazka, S., “Sintering of Silicon Carbide,” Proc. of the Conference on Ceramics for High Performance Applications, Hyannis, MA, 1973, edited by Burke, J. J., Gorum, A. E., and Katz, R. M. (Brook Hill Publ. Co., 1975).Google Scholar
2.Coppola, J. A., Hailey, L. N., and McMurtry, C. H., “Process for Producing Sintered Silicon Carbide Ceramic Body,” U. S. Patent 4124667 (November 7, 1978).Google Scholar
3.Prochazka, S., in Special Ceramics 6, edited by Popper, P. (British Ceramic Research Assn., Stoke-on-Trent, England, 1975), pp. 171181.Google Scholar
4.Maddrell, E. R., J. Mater. Sci. Lett. 6, 486488 (1987).CrossRefGoogle Scholar
5.Böcker, W., Landfermann, H., and Hausner, H., Pow. Met. Int. 10 (2), 8789 (1978).Google Scholar
6.Stutz, D., Prochazka, S., and Lorenz, J., J. Am. Ceram. Soc. 68 (9), 479482 (1985).CrossRefGoogle Scholar
7.Sakai, T. and Aikawa, T., J. Am. Ceram. Soc. 71 (1), C7 (1988).Google Scholar
8.Negita, K., J. Am. Ceram. Soc. 69 (12), C–308C–310 (1986).CrossRefGoogle Scholar
9.Cutler, R. A. and Jackson, T. B., Ceramic Materials & Components for Engines, edited by Tennery, V. J. (Am. Ceram. Soc., Westerville, OH, 1989), pp. 309318.Google Scholar
10.Cutler, I. B., Miller, P. D., Rafaniello, W., Park, H. K., Thompson, D. P., and Jack, K. H., Nature 275, 434435 (1978).CrossRefGoogle Scholar
11.Rafaniello, W., Cho, K., and Virkar, A. V., J. Mater. Sci. 16, 34793488 (1981).CrossRefGoogle Scholar
12.Ruh, R. and Zangvil, A., J. Am. Ceram. Soc. 65 (5), 260265 (1982).CrossRefGoogle Scholar
13.Rafaniello, W., Plichta, M. R., and Virkar, A. V., J. Am. Ceram. Soc. 66 (4), 272276 (1983).CrossRefGoogle Scholar
14.Zangvil, A. and Ruh, R., J. Mater. Sci. Lett. 3, 249250 (1984).CrossRefGoogle Scholar
15.Jou, Z. C., Kuo, S. Y., and Virkar, A. V., J. Am. Ceram. Soc. 69 (11), C279 (1986).CrossRefGoogle Scholar
16.Rafaniello, W., “Fabrication and Characterization of Silicon Carbide Alloys: The Silicon Carbide-Aluminum Nitride System,” Ph.D. Dissertation, The University of Utah (1984).Google Scholar
17.Huang, J. L., Hurford, A. C., Cutler, R. A., and Virkar, A. V., J. Mater. Sci. 21, 14481456 (1986).CrossRefGoogle Scholar
18.Jackson, T. B., Hurford, A. C., Bruner, S. L., and Cutler, R. A., Silicon Carbide, edited by Cawley, J. W. and Semler, C. E. (Am. Ceram. Soc, Westerville, OH, 1988), pp. 227240.Google Scholar
19.Jou, Z. C., Virkar, A. V., and Cutler, R. A., J. Mater. Res. 6, 19451949 (1991).CrossRefGoogle Scholar
20.McCauley, J. W. and Corbin, N. D., J. Am. Ceram. Soc. 62 (9–10), 476479 (1979).CrossRefGoogle Scholar
21.Kuo, S. Y., Jou, Z. C., Virkar, A. V., and Rafaniello, W., J. Mater. Sci. 21, 30193024 (1986).CrossRefGoogle Scholar
22.Lihrmann, J. M., Zambetakis, T., and Daire, M., J. Am. Ceram. Soc. 72 (9), 17041709 (1989).CrossRefGoogle Scholar
23.Skiff, W. M., Tsai, H. L., and Carpenter, R. W., in Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon, edited by Mikkelsen, J. C., Jr., Pearton, S. J., Corbett, J. W., and Pennycook, S. J. (Mater. Res. Soc. Symp. Proc. 59, Pittsburgh, PA, 1986), pp. 241–247. See also W. M. Skiff, R. W. Carpenter, S. H. Lin, and A. Higgs, Ultramicroscopy 25, 47–60 (1988).Google Scholar
24. Program from Dr. Zaluzec, N. J., Argonne National Laboratory, modified by Dr. W. M. Skiff.Google Scholar
25.Williams, R. M., Juterbock, B. N., Shinozaki, S. S., Peters, C. R., and Whalen, T. J., Am. Ceram. Soc. Bull. 64 (10), 13851389 (1985).Google Scholar
26.Smith, D. J., Jepps, N. W., and Page, T. F., J. Microscopy 114, 118 (1978).CrossRefGoogle Scholar
27.Braue, W. and Carpenter, R.W., J. Mater. Sci. 25 (6), 29432948 (1990).CrossRefGoogle Scholar
28.Clarke, D. R., J. Phys. C4, 5160 (1985).Google Scholar
29.Clarke, D. R., J. Am. Ceram. Soc. 70 (1), 1522 (1987).CrossRefGoogle Scholar
30.Chowdhury, K. Das, Carpenter, R. W., and Weiss, J. K., in Proc. 47th Ann. Mtg. Elec. Micros. Soc. Amer., edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1989), p. 428.Google Scholar
31.Hamminger, R., Grathwohl, G., and Thümmler, F., J. Mater. Sci. 18, 31543160 (1983).CrossRefGoogle Scholar
32.Sherman, R., J. Am. Ceram. Soc. 68 (1), C7 (1985).CrossRefGoogle Scholar