Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T20:18:33.472Z Has data issue: false hasContentIssue false

Transmission electron microscopy and x-ray structural investigation of La0.7Ca0.3MnO3 thin films

Published online by Cambridge University Press:  31 January 2011

Y. H. Li
Affiliation:
Department of Materials, Imperial College, Prince Consort Road, London, SW7 2BP, United Kingdom
K. A. Thomas
Affiliation:
Department of Materials, Imperial College, Prince Consort Road, London, SW7 2BP, United Kingdom
P. S. I. P. N. de Silva
Affiliation:
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom
L. F. Cohen
Affiliation:
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom
A. Goyal
Affiliation:
Department of Materials Science, University of Cambridge, Cambridge CB2 3QZ, United Kingdom
M. Rajeswari
Affiliation:
Department of Physics and Electrical Engineering, University of Maryland, College Park, Maryland
N. D. Mathur
Affiliation:
Department of Materials Science, University of Cambridge, Cambridge, CB2 3QZ, United Kingdom
M. G. Blamire
Affiliation:
Department of Materials Science, University of Cambridge, Cambridge, CB2 3QZ, United Kingdom
J. E. Evetts
Affiliation:
Department of Materials Science, University of Cambridge, Cambridge, CB2 3QZ, United Kingdom
T. Venkatesan
Affiliation:
Department of Physics and Electrical Engineering, University of Maryland, College Park, Maryland
J. L. MacManus-Driscoll
Affiliation:
Department of Materials, Imperial College, Prince Consort Road, London SW7 2BP, United Kingdom
Get access

Abstract

The structural changes and magnetoresistance (MR) properties of as-grown and post-annealed La0.7Ca0.3MnO3 films were investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The data for the films were compared to that for bulk La0.7Ca0.3MnO3 post-annealed under the same conditions. The main structure of the as-grown films was face-centered pseudo-cubic with a doubled perovskite unit cell, of size ∼2ap × ∼2ap × 2ap, where ap is the single perovskite parameter. The phase showed a cube-on-cube epitaxy with the underlying LaAlO3 substrate. Upon annealing to a saturation point, a minor primitive pseudo-tetragonal structure evolved, of cell parameters . A total of four possible orientations of the two structures was observed by TEM, comprised of one orientation of the ∼ 2ap × ∼ 2ap × ∼ 2ap cell, i.e., the cube-on-cube epitaxy, giving rise to (00l) peaks in x-ray, and three orientations of the cell, giving rise to a single (00l)/(hk0) peak in x-ray. The bulk La0.7Ca0.3MnO3 sample also contains the × structure. The difference between the bulk and the film and the effects of annealing on films can be ascribed to the influence of strain between the film and substate, induced by lattice mismatch.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rao, C. N. R., Cheetham, A. K., and Mahesh, R., Chem. Mater. 8, 2421 (1996).CrossRefGoogle Scholar
2.Chahara, K., Ohno, T., Kasai, M., and Kozono, Y., Appl. Phys. Lett. 63, 1990 (1993).CrossRefGoogle Scholar
3.Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, 413 (1994).CrossRefGoogle Scholar
4.Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y.Phys. Rev. B 51 (20), 14 103 (1995).CrossRefGoogle Scholar
5.Mitchell, J. F., Argyriou, D. N., Potter, C. D., Hinks, D. G., Jorgensen, J. D., and Bader, S. D., Phys. Rev. B 54 (9), 6172 (1996).CrossRefGoogle Scholar
6.Millis, A. J., Littlewood, P. B., and Shraiman, B. I., Phys. Rev. Lett. 74, 5144 (1995).CrossRefGoogle Scholar
7.Ramirez, A. P., Schiffer, P., Cheong, S-W., Chen, C. H., Bao, W., Palstra, T. T. M., Gammel, P. L., Bishop, D. J., and Zegarski, B., Phys. Rev. Lett. 76 (197), 3188 (1996).CrossRefGoogle Scholar
8.Zhao, G., Conder, K., Keller, H., and Muller, K. A., Nature (London) 381, 676 (1996).CrossRefGoogle Scholar
9.Martin, M. C., Shirane, G., Endoh, Y., Hirota, K., Morimoto, Y., and Tokura, Y., Phys. Rev. B 53 (21), 14 285 (1996).CrossRefGoogle Scholar
10.Martinez, L. M. R. and Attfield, J. P., Phys. Rev. B 54, 1 (1996).CrossRefGoogle Scholar
11.Asamitsu, A., Morimoto, Y., Tomioka, Y., Arima, T., and Tokura, Y., Nature (London) 373, 407 (1995).CrossRefGoogle Scholar
12.Epitaxial Oxide Thin Films II, edited by Speck, J. S., Fork, D. K., Wolf, R. M., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), p. 531.Google Scholar
13.Radaelli, P. G., Marezio, M., Hwang, H. Y., and Cheong, S-W., J. Solid State Chem. 122, 444 (1996).CrossRefGoogle Scholar
14.Mahendran, R., Tewari, S. K., Raychauduri, A. K., and Ramakrishnan, T. V., Phys. Rev. B 53 (6), 3348 (1996).CrossRefGoogle Scholar
15.Pierre, J., Robaut, F., Misat, S., Strobel, P., Nossov, A., Ustinov, V., and Vassiliev, V., Physica B 225, 214 (1996).CrossRefGoogle Scholar
16.Cheetham, A. K., Rao, C. N. R., and Vogt, T., J. Solid State Chem. 126, 337 (1996).CrossRefGoogle Scholar
17.Hervieu, M., Van Tendeloo, G., Caignaert, C., Maignan, A., and Raveau, B., Phys. Rev. B 53, 14 274 (1996).CrossRefGoogle Scholar
18.Rao, C. N. R. and Cheetham, A. K., Science 272, 369 (1996).CrossRefGoogle Scholar
19.Archibald, W., Zhou, J., and Goodenough, J. B., Phys. Rev. B 53 (21), 14 445 (1996).CrossRefGoogle Scholar
20.Asamitsu, A., Moritomo, Y., Kumai, R., Tomioka, Y., and Tokura, Y., Phys. Rev. B 54 (3), 1716 (1996).CrossRefGoogle Scholar
21.Radaelli, P. G., Marezio, M., Hwang, H. Y., Cheong, S-W., and Batlogg, B., Phys. Rev. B 54, 8992 (1996).CrossRefGoogle Scholar
22.Verelst, M., Rangavittal, N., Rao, C. N. R., and Rousset, A., J. Solid State Chem. 104, 74 (1993).CrossRefGoogle Scholar
23.Yakel, H. L., Jr., Acta Crystallogr. 8, 394 (1955).CrossRefGoogle Scholar
24.Turilli, G. and Licci, F., Phys. Rev. B 54 (18), 13 052 (1996).CrossRefGoogle Scholar
25.McCormack, M., Jin, S., Tiefel, T. H., Fleming, R. M., Philips, J. M., and Ramesh, R., Appl. Phys. Lett. 64 (22), 3045 (1994).CrossRefGoogle Scholar
26.Xiaong, G. C., Li, Q., Ju, L., Mao, S. N., Senapati, L., Xi, X. X., Greene, R. L., and Venkatesan, T., Appl. Phys. Lett. 66, 1427 (1995).CrossRefGoogle Scholar
27.Li, Y. Q., Zhang, J., Pombrick, S., DiMiascio, S., Steven, W., Yan, Y. F., and Ong, N. P., J. Mater. Res. 10, 2166 (1995).CrossRefGoogle Scholar
28.Bae, S-Y. and Wang, S. X., Appl. Phys. Lett. 69 (1), 121 (1996).CrossRefGoogle Scholar
29.Zeng, X. T. and Wong, H. K., IEEE Trans. (Magnetics) 31 (6), 3910 (1995).CrossRefGoogle Scholar
30.Achutharaman, V. S., Kraus, P. A., Vas'ko, V. A., Nordman, C. A., and Goldman, A. M., Appl. Phys. Lett. 67 (7), 1019 (1995).CrossRefGoogle Scholar
31.O'Donnell, J., Onellion, M., Rzchowski, M. S., Eckstein, J. N., and Bozovic, I., Phys. Rev. B 54 (10), R6841 (1996).CrossRefGoogle Scholar
32.Eckstein, J. N., Bozovic, I., O'Donnell, J., Onellion, M., and Rzchowski, M. S., Appl. Phys. Lett. 69, 1312 (1996).CrossRefGoogle Scholar
33.Modak, A. R. and Krishnan, K. M., J. Appl. Phys. 79, 5169 (1996).Google Scholar
34.Thomas, K. A., et al. (unpublished).Google Scholar
35.Holland, T. J. B. and Redfern, S. A. T., J. Appl. Crystallogr. 30, 84 (1997).CrossRefGoogle Scholar
36.Kraus, W. and Nolze, G., J. Appl. Crystallogr. 29, 301 (1996).CrossRefGoogle Scholar
37.Horwitz, J. S., Dorsey, P. C., Koon, N. C., Rubinstein, M., Bayers, J. M., Gillespie, D. J., Osofsky, M. S., Harris, V. G., Grabowski, K. S., Knies, D. L., Danovan, E. P., Treece, R. E., and Chrisey, D. B., in Epitaxial Oxide Thin Films II, edited by Speck, J. S., Fork, D. K., Wolf, R. W., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), p. 525.Google Scholar