Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T07:45:41.406Z Has data issue: false hasContentIssue false

Transformation Mechanism from Carbon Nanotubes to n-diamond

Published online by Cambridge University Press:  01 June 2005

Bin Wen*
Affiliation:
Department of Materials Engineering, Dalian University of Technology, Dalian 116023, People’s Republic of China
Tingju Li
Affiliation:
Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023, People’s Republic of China
Chuang Dong
Affiliation:
Department of Materials Engineering, Dalian University of Technology, Dalian 116023, People’s Republic of China
Junze Jin
Affiliation:
Laboratory of Special Processing of Raw Materials, Dalian University of Technology, Dalian 116023, People’s Republic of China
*
a) Address all correspondence to these authors. a) e-mail: [email protected]
Get access

Abstract

Nanocrystal n-diamond particles were synthesized after a pyrogenation of carbon nanotubes and colloidal Fe(OH)3 at atmospheric pressure. The product was investigated with x-ray diffraction, transmission electron microscopy, thermal gravimetric analysis, and differential thermal analysis. The results indicate that the n-diamond can be synthesized with the carbon nanotubes as carbon source. The formation mechanism of the n-diamond is suggested in this paper. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH)3 into Fe2O3, α–Fe, γ–Fe, and then liquid iron. When carbon in the liquid iron is saturated, graphite separated out of the liquid iron. With the decrease of temperature, the carbon in γ–Fe is separated out, and the n-diamond nuclei form and grow.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Konyashin, I., Zern, A., Mayer, J., Aldinger, F., Babaev, V., Khvostov, V. and Guseva, M.: A new carbon modification: ‘n-diamond’ or face-centred cubic carbon. Diamond Relat. Mater. 10, 99 (2001).CrossRefGoogle Scholar
2Jarkov, S.M., Titarenko, Ya.N. and Churilov, G.N.: Electron microscopy studies of fcc carbon particles. Carbon 36, 595 (1998).CrossRefGoogle Scholar
3Amaratunga, G., Putnis, A., Clay, K. and Milne, W.: Crystalline diamond growth in thin films deposited from a CH4/Ar rf plasma. Appl. Phys. Lett. 55, 634 (1989).CrossRefGoogle Scholar
4Frenklach, M., Kematick, R., Huang, D., Howard, W. and Spear, K.E.: Homogeneous nucleation of diamond powder in the gas phase. J. Appl. Phys. 66, 395 (1989).CrossRefGoogle Scholar
5Hirai, H. and Kondo, K.I.: Modified phases of diamond formed under shock compression and rapid quenching. Science. 253, 772 (1991).CrossRefGoogle ScholarPubMed
6Yoo, C.S., Nellis, W.J., Sattler, M.L. and Musket, R.G.: Diamondlike metastable carbon phases from shock-compressed C60 films. Appl. Phys. Lett. 61, 273 (1992).CrossRefGoogle Scholar
7Endo, S., Idani, N., Oshima, R., Takano, K.J. and Wakatsuko, M.: X-ray diffraction and transmission-electron microscopy of natural polycrystalline graphite recovered from high pressure. Phys. Rev. B 49, 22 (1994).CrossRefGoogle ScholarPubMed
8Orwa, J.O., Prawer, S., Jamieson, D.N., Peng, J.L., McCallum, J.C., Nugent, K.W., Li, Y.J., Bursill, L.A. and Withrow, S.P.: Diamond nanocrystals formed by direct implantation of fused silica with carbon. J. Appl. Phys. 90, 3007 (2001).CrossRefGoogle Scholar
9Peng, J.L., Bursill, L.A., Jiang, B., Orwa, J.O. and Prawer, S.: Growth of c-diamond, n-diamond and i-carbon nanophases in carbon-ion-implanted fused quartz. Philos. Mag. B 81, 2071 (2001).CrossRefGoogle Scholar
10Peng, J.L., Orwa, J.O., Jiang, B., Prawer, S. and Bursill, L.A.: Nano-crystals of c-diamond, n-diamond and i-carbon grown in carbon-ion implanted fused quartz. Int. J. Mod. Phys. B 15(23), 3107 (2001).CrossRefGoogle Scholar
11Wen, B., Li, T., Dong, C., Zhang, X., Yao, S., Cao, Z., Wang, D., Ji, S. and Jin, J.: Preparation of diamond nanocrystals from catalysed carbon black in a high magnetic field. J. Phys. Condens. Matter 15, 8049 (2003).CrossRefGoogle Scholar
12Wen, B., Li, T., Dong, C., Zhang, X., Yao, S., Cao, Z., Wang, D., Ji, S. and Jin, J.: Study of the stability of n-diamond. J. Phys. Condens. Matter 16, 2991 (2004).CrossRefGoogle Scholar
13Doherty, S.P., Buchholz, D.B., Li, B.J. and Chang, R.P.H.: Solid-state synthesis of multiwalled carbon nanotubes. J. Mater. Res. 18, 941 (2003).CrossRefGoogle Scholar
14Buchholz, D.B., Doherty, S.P. and Chang, R.P.H.: Mechanism for the growth of multiwalled carbon-nanotubes from carbon black. Carbon 41, 1625 (2003).CrossRefGoogle Scholar
15Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).CrossRefGoogle Scholar
16Cataldo, F.: The impact of a fullerene-like concept in carbon black. Carbon 40, 157 (2002).CrossRefGoogle Scholar
17Berezkin, V.I., Kholodkevich, S.V. and Konstantinov, P.P.: Hall effect in the natural glassy carbon of schungites. Phys. Solid State 39, 1590 (1997).CrossRefGoogle Scholar
18Berezkin, V.I.: Fullerenes as nuclei of carbon black particles. Phys. Solid State 42, 580 (2000).CrossRefGoogle Scholar
19Berezkin, V.I.: Formation of closed carbon particles from fullerene nuclei. Phys. Solid State. 43, 967 (2001).CrossRefGoogle Scholar
20Donnet, J.B., Johnson, M.P., Norman, D.T. and Wang, T.K.: Fullerenic carbon in carbon black furnaces. Carbon 38, 1885 (2000).CrossRefGoogle Scholar
21Kholodkevich, S.V., Berezkin, V.I. and Davydov, V.Yu.: Specific structural features and thermal resistance of shungite carbon to graphitization. Phys. Solid State 41, 1291 (1999).CrossRefGoogle Scholar
22Papirer, E., Brendle, E., Ozil, F. and Balard, H.: Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 37, 1265 (1999).CrossRefGoogle Scholar
23Krishnan, A., Dujardin, E., Treacy, M.M.J., Hugdahl, J., Lynum, S. and Ebbesen, T.W.: Graphitic cones and the nucleation of curved carbon surface. Nature 388, 451 (1997).CrossRefGoogle Scholar
24Howard, J.B., Chowdhury, K.D. and Sande, J.B.V.: Carbon shells in flames. Nature 370, 603 (1994).CrossRefGoogle Scholar
25Howard, J.B., Mckinnon, J.T., Makarovsky, Y., Lafleur, A.L. and Johnson, M.E.: Fullerenes C60 and C70 in flames. Nature 352, 139 (1991).CrossRefGoogle ScholarPubMed
26Lijima, S.: Helical microthbules of graphitic carbon. Nature 354, 56 (1991).Google Scholar
27Lijima, S., Ichihashi, T. and Ando, Y.: Heptagons and negative curvature in graphite microtubule growth. Nature 356, 776 (1992).CrossRefGoogle Scholar
28Lijima, S., Ajayan, P.M. and Ichihashi, T.: Growth model for carbon nanotubes. Phys. Rev. Lett. 69, 3100 (1992).Google Scholar
29Popov, V.N.: Carbon nanotubes: Properties and application. Mater. Sci. Eng. R. 43, 61 (2004).CrossRefGoogle Scholar
30Jose-Yacaman, M., Miki-Yoshida, M., Rendon, L. and Santiesteban, J.G.: Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 62(6), 202 (1993).CrossRefGoogle Scholar
31Christian, J.W.: The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, U.K., 1965), p. 678.Google Scholar
32Strong, H.M. and Hanneman, R.E.: Crystallization of diamond and graphite. J. Chem. Phys. 46, 3668 (1967).CrossRefGoogle Scholar
33Fedorov, I.I., Chepurov, A.A. and Dereppe, J.M.: Redox conditions of metal-carbon melts and natural diamond genesis. Geochem. J. 36, 247 (2002).CrossRefGoogle Scholar
34Wen, B., Li, T., Dong, C., Zhang, X., Yao, S., Cao, Z., Wang, D., Ji, S. and Jin, J.: Formation mechanism of diamond nanocrystal from catalysed carbon black. J. Phys. Condens. Matter 16, 6891 (2004).CrossRefGoogle Scholar
35 Joint Committee on Powder Diffraction Standards (JCPDS); see supplementary x-ray data 31-0619.Google Scholar
36Jin, J.M. and Bao, W.F.: Ferrous pm production and carbon gasification reaction. Powder Metall. Ind. 9(4), 15 (1999).Google Scholar