Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T05:16:38.409Z Has data issue: false hasContentIssue false

TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications

Published online by Cambridge University Press:  25 January 2013

Vaidyanathan Ravi Subramanian*
Affiliation:
Chemical and Materials Engineering, University of Nevada, Reno, Nevada 89557
Swagatom Sarker
Affiliation:
Chemical and Materials Engineering, University of Nevada, Reno, Nevada 89557
Bowen Yu
Affiliation:
Chemical and Materials Engineering, University of Nevada, Reno, Nevada 89557
Archana Kar
Affiliation:
Chemical and Materials Engineering, University of Nevada, Reno, Nevada 89557
Xiaodi Sun
Affiliation:
Materials Science and Engineering Program, SEMTE, Arizona State University, Tempe, Arizona 85287
Sandwip K. Dey
Affiliation:
Materials Science and Engineering Program, SEMTE, Arizona State University, Tempe, Arizona 85287
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This article describes the multifunctional applications of TiO2. It substantiates the universality of the anodization process to grow well-ordered TiOxnanotube (T–NT) of hollow cylindrical shape on a variety of planar and nonplanar substrates. It highlights an approach to effectively bring down the cost of anodization via utilization of a small volume of electrolyte. The multifunctionality of these nanostructures is highlighted through representative examples that illustrate wide ranging optical, electronic, and catalytic properties. Combining the T–NT with other materials such as metals and photoactive additives to form composite nanostructures has been shown to benefit photocatalysis, photovoltaics, biological processes, and environment-related applications. This article also demonstrates the applicability of T–NT as an agent to produce dissolved oxygen in simulated blood—an application that can assist in the development of artificial lungs. Key results from the research group, collaborations, and recent articles are highlighted.

Type
Reviews
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lewis, N.S. and Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006).Google Scholar
Mills, A., Davies, R.H., and Worsley, D.: Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 22, 417 (1993).Google Scholar
Hoffmann, M.R., Martin, S.T., Choi, W.Y., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).Google Scholar
Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).Google Scholar
Bahnemann, D.: Photocatalytic water treatment: Solar energy applications. Sol. Energy 77, 445 (2004).Google Scholar
Cozzoli, P.D., Fanizza, E., Comparelli, R., Curri, M.L., Agostiano, A., and Laub, D.: Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. J. Phys. Chem. B 108, 9623 (2004).Google Scholar
Aroutiounian, V.M., Arakelyan, V.M., and Shahnazaryan, G.E.: Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy 78, 581 (2005).Google Scholar
Demeestere, K., Dewulf, J., and Langenhove, H.V.: Heterogeneous photocatalysis as an advanced oxidation process for abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art. Crit. Rev. Environ. Sci. Technol. 37, 489 (2007).Google Scholar
Fujishima, A., Zhang, X., and Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).Google Scholar
Zhang, Q., Xu, H., and Yan, W.: Highly ordered TiO2 nanotube arrays: Recent advances in fabrication and environmental applications-a review. Nanosci. Nanotechnol. Lett. 4, 505 (2012).Google Scholar
Mohamed, A.E.R. and Rohani, S.: Modified TiO2 nanotube arrays (TNTAs): Progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065 (2011).Google Scholar
Ghicov, A. and Schmuki, P.: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 45, 2791 (2009).Google Scholar
Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).Google Scholar
Kar, A., Ryan, P., and Subramanian, V.R.: Photoelectrochemical responses of anodized titanium oxide films. J. Mater. Res. 25, 82 (2010).CrossRefGoogle Scholar
Sohn, Y., Smith, Y., Misra, M., and Subramanian, V.: Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Appl. Catal., B 84, 372 (2008).Google Scholar
Zhuang, H.F., Lin, C.J., Lai, Y.K., Sun, L., and Li, J.: Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol. 41, 4735 (2007).Google Scholar
Watcharenwong, A., Chanmanee, W., de Tacconi, N.R., Chenthamarakshan, C.R., Kajitvichyanukul, P., and Rajeshwar, K.: Self-organized TiO2 nanotube arrays by anodization of Ti substrate: Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response. J. Mater. Res. 22, 3186 (2007).Google Scholar
Yang, Y., Wang, X.H., and Li, L.T.: Synthesis and photovoltaic application of high aspect-ratio TiO2 nanotube arrays by anodization. J. Am. Ceram. Soc. 91, 3086 (2008).CrossRefGoogle Scholar
Lai, Y.K., Sun, L., Chen, Y.C., Zhuang, H.F., Lin, C.J., and Chin, J.W.: Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 153, D123 (2006).Google Scholar
Yoriya, S. and Grimes, C.A.: Self-assembled TiO2 nanotube arrays by anodization of titanium in diethylene glycol: Approach to extended pore widening. Langmuir 26, 417 (2010).Google Scholar
Kar, A., Smith, Y.R., and Subramanian, V.: Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 43, 3260 (2009).Google Scholar
Jaeger, V., Wilson, W., and Subramanian, V.: Photodegradation of methyl orange and 2,3-butanedione on titanium-dioxide nanotube arrays efficiently synthesized on titanium coils. Appl. Catal., B 110, 6 (2011).Google Scholar
Smith, Y.R. and Subramanian, V.: Heterostructural composites of TiO2 mesh-TiO2 nanoparticles photosensitized with CdS: A new flexible photoanode for solar cells. J. Phys. Chem. C 115, 8376 (2011).Google Scholar
Smith, Y., Kar, A., and Subramanian, V.R.: Investigation of physicochemical parameters that influence photocatalytic degradation of methyl orange over TiO2 nanotubes. Ind. Eng. Chem. Res. 48, 10268 (2009).Google Scholar
Mohapatra, S.K., Misra, M., Mahajan, V.K., and Raja, K.S.: A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246, 362 (2007).Google Scholar
Subramanian, V., Ni, Z., Seebauer, E.G., and Masel, R.I.: Synthesis of high-temperature titania-alumina supports. Ind. Eng. Chem. Res. 45, 3815 (2006).Google Scholar
Xiao, X., Quyang, K., Liu, R., and Liang, J.: Anatase type titania nanotube arrays direct fabricated by anodization without annealing. Appl. Surf. Sci. 255, 3659 (2009).CrossRefGoogle Scholar
Matthew, A.: The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. Am. Mineral. 61, 429 (1976).Google Scholar
Kim, S-J., Park, S-D., and Jeong, Y.H.: Homogeneous precipitation of TiO2 ultra fine powders from aqueous TiOCl2 solution. J. Am. Ceram. Soc. 82, 927 (1999).Google Scholar
Palmas, S., Pozzo, D.A., and Mascia, M.: Photo-electrochemical behavior at different wavelengths of electrochemically obtained TiO2 nanotubes. J. Appl. Electrochem. 42, 745 (2012).Google Scholar
Sang, L.X., Zhang, Z.Y., Bai, G.M., Du, C.X., and Ma, C.F.: A photoelectrochemical investigation of the hydrogen-evolving doped TiO2 nanotube arrays electrode. Int. J. Hydrogen Energy 37, 854 (2012).Google Scholar
Borkar, S.A. and Dharwadkar, S.R.: Effect of microwave processing on polymorphic transformation of TiO2. Ceram. Int. 30, 509 (2004).Google Scholar
Patil, V.B., Shahane, G.S., Sutrave, D.S., Raut, B.T., and Deshmukh, L.P.: Photovoltaic properties of n-CdS1−xTex thin film/polysulphide photoelectrochemical solar cells prepared by chemical bath deposition. Thin Solid Films 446, 1 (2004).Google Scholar
Ma, Q. and Liu, S.J.: Significantly enhanced structural and thermal stability of anodized anatase nanotube arrays induced by tensile strain. Electrochim. Acta 56, 7596 (2011).CrossRefGoogle Scholar
Beranek, R., Tsuchiya, H., Sugishima, T., Macak, J.M., Taveira, L., Fujimoto, S., Kisch, H., and Schmuki, P.: Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 87 243114_1 (2005).Google Scholar
Liu, Z., Zhang, X., Nishimoto, S., Jin, M., Tryk, D., Murakami, T., and Fujishima, A.: Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112, 253 (2008).Google Scholar
Liu, Z.Y., Zhang, X.T., Nishimoto, S., Murakami, T., and Fujishima, A.: Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42, 8547 (2008).Google Scholar
Xie, Y.: Photoelectrochemical application of nanotubular titania photoanode. Electrochim. Acta 51, 3399 (2006).Google Scholar
Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S.M., and Grtzel, M.: Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2, 1113 (2008).Google Scholar
Maiyalagan, T., Viswanathan, B., and Varadaraju, U.V.: Electro-oxidation of methanol on TiO2 nanotube supported platinum electrodes. J. Nanosci. Nanotechnol. 6, 2067 (2006).Google Scholar
Wang, M., Guo, D.J., and Li, H.L.: High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J. Solid State Chem. 178, 1996 (2005).Google Scholar
Murugesan, S., Smith, Y.R., and Subramanian, V.: Hydrothermal synthesis of Bi12TiO20 nanostructures using anodized TiO2 nanotubes and its application in photovoltaics. J. Phys. Chem. Lett. 1, 1631 (2010).Google Scholar
Bard, A.J. and Fox, M.A.: Artificial photosynthesis - solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141 (1995).Google Scholar
Kudo, A., Kato, H., and Nakagawa, S.: Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: Factors affecting the photocatalytic activity. J. Phys. Chem. B 104, 571 (2000).Google Scholar
Zou, Z.G., Ye, J.H., and Arakawa, H.: Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int. J. Hydrogen Energy 28, 663 (2003).Google Scholar
Abe, R., Higashi, M., Zou, Z.G., Sayama, K., and Abe, Y.: Photocatalytic water splitting into H2 and O2 over R2Ti2O7 (R = Y, rare earth) with pyrochlore structure. Chem. Lett. 33, 954 (2004).Google Scholar
Dhere, N.G. and Jahagirdar, A.H.: Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst. Thin Solid Films 480481, 462–465 (2005).Google Scholar
Nowotny, J., Bak, T., Nowotny, M.K., and Sheppard, L.R.: TiO2 surface active sites for water splitting. J. Phys. Chem. B 110, 18492 (2006).Google Scholar
Matsuoka, M., Kitano, M., Takeuchi, M., Tsujimaru, K., Anpo, M., and Thomas, J.M.: Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production. Catal. Today 122, 51 (2007).Google Scholar
Allam, N.K. and El-Sayed, M.A.: Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: Structural and optical properties. J. Phys. Chem. C 114, 12024 (2009).Google Scholar
Li, Y.K., Yu, H.M., Song, W., Li, G.F., Yi, B.L., and Shao, Z.G.: A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int. J. Hydrogen Energy 36, 14374 (2012).Google Scholar
Zhang, Z., Hossain, M.F., and Takahashi, T.: Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen energy 35, 8528 (2010).Google Scholar
Nam, W., Oh, S., Joo, H., Sarp, S., Cho, J., Nam, B.W., and Yoon, J.: Preparation of anodized TiO2 photoanode for photoelectrochemical hydrogen production using natural seawater. Sol. Energy Mater. Sol. Cells 94, 1809 (2010).CrossRefGoogle Scholar
Sun, Y., Yan, K.P., Wang, G.X., Guo, W., and Ma, T.L.: Effect of annealing temperature on the hydrogen production of TiO2 nanotube arrays in a two-compartment photoelectrochemical cell. J. Phys. Chem. C 115, 12844 (2011).Google Scholar
Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005).CrossRefGoogle ScholarPubMed
Macak, J.M., Ghicov, A., Hahn, R., Tsuchiya, H., and Schmuki, P.: Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. J. Mater. Res. 21, 2824 (2006).Google Scholar
Macak, J.M., Barczuk, P.J., Tsuchiya, H., Nowakowska, M.Z., Ghicov, A., Chojak, M., Bauer, S., Virtanen, S., Kulesza, P.J., and Schmuki, P.: Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. Electrochem. Commun. 7, 1417 (2005).Google Scholar
Li, C., Yuan, J., Han, B., Jiang, L., and Shangguan, W.F.: TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int. J. Hydrogen Energy, 35, 7073 (2010).Google Scholar
Hamedani, H.A., Allam, N.K., Garmestani, H., and El-Sayed, M.A.: Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J. Phys. Chem. C 115, 13480 (2011).Google Scholar
Roy, P., Das, C., Lee, K.S., Hahn, R., Ruff, T., Moll, M., and Schmuki, P.: J. Phys. Chem. C 114, 12024 (2010).Google Scholar
Nam, W., Oh, S., Joo, H., and Yoon, J.: Preparation of Pt deposited nanotubular TiO2 as cathodes for enhanced photoelectrochemical hydrogen production using seawater electrolytes. J. Sol. State Chem. 184, 2920 (2011).Google Scholar
Antony, R.P., Mathews, T., Ramesh, C., Murugesan, N., Dasgupta, A., Dhara, S., Dash, S., and Tyagi, A.K.: Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int. J. Hydrogen Energy 37, 8268 (2012).Google Scholar
Raja, K., Smith, Y., Kondamudi, N., Manivannan, A., Misra, M., and Subramanian, V.: CO2 photoreduction in the liquid phase over Pd-supported on TiO2 nanotube and bismuth titanate photocatalysts. Electrochem. Solid State Lett. 14, F5 (2010).Google Scholar
Wang, H.Y., Yang, Y.C., Wei, J.H., Le, L., Liu, Y., Pan, C.X., Fang, P.F., Xiong, R., and Shi, J.: Effective photocatalytic properties of N doped titanium dioxide nanotube arrays prepared by anodization. React. Kinet. Mech. Catal. 106, 341 (2012).Google Scholar
Nasr, C., Kamat, P.V., and Hotchandani, S.: Photoelectrochemistry of composite semiconductor thin films. Photosensitization of the SnO2/TiO2 coupled system with a ruthenium polypyridyl complex. J. Phys. Chem. B 102, 10047 (1998).Google Scholar
Subramanian, V., Wolf, E.E., and Kamat, P.V.: Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 105, 11439 (2001).CrossRefGoogle Scholar
Li, L.J., Zhou, Z.Q., Lei, J.L., He, J.X., Zhang, S.T., and Pan, F.S.: Highly ordered anodic TiO2 nanotube arrays and their stabilities as photo(electro)catalysts. Appl. Surf. Sci. 258, 3647 (2012).Google Scholar
Yao, Y., Li, K., Chen, S., Jia, J.P., Wang, Y.L., and Wang, H.W.: Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chem. Eng. J. 187, 29 (2012).Google Scholar
Liu, G.H., Wang, K.Y., Hoivik, N., and Jakobsen, H.: Progress on free-standing and flow-through TiO2 nanotube membranes. Sol. Energy Mater. Sol. Cells 98, 24 (2012).Google Scholar
Kontos, A.G., Katsanaki, A., Maggos, T., Likodimos, V., Ghicov, A., Kim, D., Kunze, J., Vasilakos, C., Schmuki, P., and Falaras, P.: Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. Chem. Phys. Lett. 490, 58 (2010).Google Scholar
Zhang, A.Y., Zhou, M.H., Han, L., and Zhou, Q.X.: Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes: A comparative study. Appl. Catal. A 385, 114 (2010).Google Scholar
Onoda, K. and Yoshikawa, S.: Applications of anodized TiO2 films for environmental purifications. Appl. Catal. B 80, 277 (2008).Google Scholar
Wang, N., Li, X.Y., Wang, Y.X., Quan, X., and Chen, G.H.: Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chem. Eng. J. 146, 30 (2009).Google Scholar
Sreekantan, S., Hazan, R., and Lockman, Z.: Photoactivity of anatase–rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518, 16 (2009).Google Scholar
Kontos, A.G., Katsanaki, A., Likodimos, V., Maggos, T., Kim, D., Vasilakos, C., Dionysiou, D.D., Schmuki, P., and Falaras, P.: Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films. Chem. Eng. J. 179, 151 (2012).Google Scholar
Cardoso, J.C., Lizier, T.M., and Zanoni, M.V.B.: Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Appl. Catal. B 99, 96 (2010).Google Scholar
Yu, L., Wang, Z.Y., Shi, L.Y., Yuan, S., Zhao, Y., Fang, J.H., and Deng, W.: Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Appl. Catal. B 113, 318 (2012).Google Scholar
Wender, H., Feil, A.F., Diaz, L.B., Ribeiro, C.S., Machado, G.J., Migowski, P., Weibel, D.E., Dupont, J., and Teixeira, S.R.: Self-organized TiO2 nanotube arrays: Synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl. Mater. Interfaces 3, 1359 (2011).Google Scholar
Liu, X., Liu, Z.Q., Hao, S.X., and Chu, W.: Facile fabrication of well-dispersed silver nanoparticles loading on TiO2 nanotube arrays by electrodeposition. Mater. Lett. 80, 66 (2012).Google Scholar
Li, X.Y., Zou, X.J., Qu, Z.P., Zhao, Q.D., and Wang, L.Z.: Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method. Chemosphere 83, 674 (2011).Google Scholar
In, S.I., Vesborg, P.C.K., Abrams, B.L., Hou, Y.D., and Chorkendorff, I.: A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules. J. Photochem. Photobiol., A 222, 258 (2011).Google Scholar
Kim, D., Fujimoto, S., Schmuki, P., and Tsuchiya, H.: Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochem. Commun. 10, 910 (2008).Google Scholar
Liang, H.C. and Li, X.Z.: Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films. Appl. Catal. B 86, 8 (2009).Google Scholar
Lin, J., Zong, R.L., Zhou, M., and Zhu, Y.F.: Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl. Catal. B 89, 425 (2009).Google Scholar
Zhou, X.S., Jin, B., Zhang, S.S., Wang, H.J., Yu, H., and Peng, F.: Preparation of boron and phosphor co-doped TiO2 nanotube arrays and their photoelectrochemical property. Electrochem. Commun. 19, 127 (2012).Google Scholar
Subramanian, V.: Nanostructured semiconductor composites for solar cells. Interface 16, 32 (2007).Google Scholar
Mor, G.K., Varghese, O.K., Paulose, M., and Grimes, C.A.: Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv. Funct. Mater. 15, 1291 (2005).Google Scholar
Zhang, Y., Wang, D.J., Pang, S., Lin, Y.H., Jiang, T.F., and Xie, T.F.: A study on photo-generated charges property in highly ordered TiO2 nanotube arrays. Appl. Surf. Sci. 256, 7217 (2010).Google Scholar
Beranek, R., Macak, J.M., Gartner, M., Meyer, K., and Schmuki, P.: Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes. Electrochim. Acta 54, 2640 (2009).Google Scholar
Tighineanu, A., Ruff, T., Albu, S., Hahn, R., and Schmuki, P.: Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. Chem. Phys. Lett. 494, 260 (2010).Google Scholar
Chanmanee, W., Watcharenwong, A., Chenthamarakshan, R.C., Kajitvichyanukul, P., de Tacconi, N.R., and Rajeshwar, K.: Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. J. Am. Chem. Soc. 130, 965 (2008).Google Scholar
Liu, Z.Y., Subramania, V., and Misra, M.: Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells. J. Phys. Chem. C 113, 14028 (2009).Google Scholar
Ye, M.D., Xin, X.K., Lin, C.J., and Lin, Z.Q.: High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett. 11, 3214 (2011).Google Scholar
Xie, Y., Ali, G., Yoo, S.H., and Cho, S.O.: Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2910 (2010).Google Scholar
Li, D.D., Chang, P.C., Chien, C.J., and Lu, J.G.: Applications of tunable TiO2 nanotubes as nanotemplate and photovoltaic device. Chem. Mater. 22, 5707 (2010).Google Scholar
Gao, X.F., Sun, W.T., Hu, Z.D., Ai, G., Zhang, Y.L., Feng, S., Li, F., and Peng, L.M.: An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C 113, 20481 (2009).CrossRefGoogle Scholar
Smith, Y.R., Subramanian, V., and Viswanathan, B.: Photo-electrochemical and photo-catalytic conversion of carbon dioxide, in Photo-Electrochemistry and Photobiology for Sustainability, Chapter 9, edited by S. Kaneco, B. Viswanathan, and H. Katsumata (Bentham Science Publishers, Bangalore, India, 2010).Google Scholar
Koci, K., Obalova, L., Matejova, L., Placha, D., Lacny, Z., Jirkovsky, J., and Solcova, O.: Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal., B 89, 494 (2009).Google Scholar
Indrakanti, V.P., Schobert, H.H., and Kubicki, J.D.: Quantum mechanical modeling of CO2 interactions with irradiated stoichiometric and oxygen-deficient anatase TiO2 surfaces: Implications for the photocatalytic reduction of CO2. Energy Fuels 23, 5247 (2009).Google Scholar
Varghese, O.K., Paulose, M., LaTempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).Google Scholar
Feng, X.J., Sloppy, J.D., LaTemp, T.J., Paulose, M., Komarneni, S., Bao, N.Z., and Grimes, C.A.: Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. J. Mater. Chem. 21, 13429 (2011).Google Scholar
Yang, C.C., Yu, T.H., Linden, B., Wu, J.C.S., and Mul, G.: Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? Am. Chem. J. 132, 8398 (2010).CrossRefGoogle ScholarPubMed
Baram, N., Starosvetsky, D., Starosvetsky, J., Epshtein, M., Armon, R., and Ein-Eli, Y.: Photocatalytic inactivation of microorganisms using nanotubular TiO2. Appl. Catal., B 101, 212 (2011).Google Scholar
Hou, Y., Li, X.Y., Zhao, Q.D., Chen, G.H., and Rastor, C.L.: Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 46, 4042 (2012).Google Scholar
Yu, C.K., Hu, K.H., Wang, S.H., Hsu, T., Tsai, H.T., Chen, C.C., Liu, S.M., Lin, T.Y., and Chen, C.H.: Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media. Appl. Phys. A 102, 271 (2011).Google Scholar