Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T02:09:02.752Z Has data issue: false hasContentIssue false

Ti-doped MgAl2O4 spinel single crystals grown by the micro-pulling-down method for laser application: Growth and strong visible blue emission

Published online by Cambridge University Press:  03 March 2011

Anis Jouini*
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Hiroki Sato
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Akira Yoshikawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Tsuguo Fukuda
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
Georges Boulon
Affiliation:
Physical Chemistry of Luminescent Materials, UMR CNRS 5620, Claude Bernard / Lyon 1 University, Villeurbanne 69622, France
Gérard Panczer
Affiliation:
Physical Chemistry of Luminescent Materials, UMR CNRS 5620, Claude Bernard / Lyon 1 University, Villeurbanne 69622, France
Kiyoshi Kato
Affiliation:
Chitose Institute of Science and Technology, 758-65, Bibi Chitose-city, Hokkaido 066-8655, Japan
Eiichi Hanamura
Affiliation:
Chitose Institute of Science and Technology, 758-65, Bibi Chitose-city, Hokkaido 066-8655, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The photoluminescence spectra of the rod-shaped pure and Ti-doped MgAl2O4 single crystals, grown by the micro-pulling-down (μ-PD) method, have been systematically investigated under high-intensity pulsed Nd3+: YAG laser excitation in the ultraviolet (UV) region (266 nm). The chemical properties of the grown crystals under reducing argon atmosphere will be reported and the annealing effect under oxidizing atmosphere will be discussed. The room temperature luminescence properties of Ti-doped MgAl2O4 single crystals were performed before and after annealing as a function of the titanium concentration. Three broad bands absorption in the UV/VIS (visible) spectral regions and a broadband visible blue emission were observed from Ti-doped MgAl2O4. An estimation of the decay time value of theses emissions was determined from the time-resolved spectra and the energies of the vibrational modes of the MgAl2O4 crystal are obtained from the infrared spectra.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yumashev, K.V., Denisov, I.A., Posnov, N.N., Prokoshin, P.V., and Mikhailov, V.P.: Nonlinear absorption properties of Co2+:MgAl2O4 crystal. Appl. Phys. B 70, 179 (2000).CrossRefGoogle Scholar
2Mikenda, W. and Preisinger, A.: N-lines in the luminescence spectra of Cr3+-doped spinels (I) identification of N-lines. J. Lumin. 26, 53 (1981).CrossRefGoogle Scholar
3Aizawa, H., Ohishi, N., Ogawa, S., Watanabe, E., Katsumata, T., Komuro, S., Morikawa, T., and Toba, E.: Characteristics of chromium doped spinel crystals for a fiber-optic thermometer application. Rev. Sci. Instrum. 73, 3089 (2002).CrossRefGoogle Scholar
4Moulton, P.F.: Ti-doped sapphire: Tunable solid-state laser. Opt. News 8, 9 (1982).CrossRefGoogle Scholar
5Fukuda, T.: Growth of Micro and Bulk Crystals by Modified Micro-PD and Their Properties, Fiber Crystal Growth from the Melt, edited by Fukuda, T., Rudolph, P. and Uda, S. (Springer, 2004).CrossRefGoogle Scholar
6Boch, P., Bonnet, J.P., Bouquillon, A., Chartier, T., Gaillard, J.M., and Goursat, P.: Materials and Ceramics Process, Mechanical and Engineering of Materials. Hermes Science Publications(2001).Google Scholar
7Schmocker, U., Bocsch, H.R., and Waldner, F.: A direct determination of cation disorder in MgAl2O4 spinel by ESR. Phys. Lett. A 40, 237 (1972).CrossRefGoogle Scholar
8Sickafus, K.E., Wills, J.M., and Grimes, N.W.: Spinel compounds: Structure and property relations. J. Am. Ceram. Soc. 82, 3279 (1999).CrossRefGoogle Scholar
9Hanamura, E., Katabe, Y., Takashima, H., Sato, T., and Tomita, A.: Optical properties of transition-metal doped spinels. J. Nonlinear Opt. Phys. Mater. 12, 467 (2003).CrossRefGoogle Scholar
10Tomita, A., Sato, T., Tanake, K., Kawabe, Y., Shirai, M., Tanaka, K., and Hanamura, E.: Luminescence channels of manganese-doped spinel. J. Lumin. 109, 19 (2004).CrossRefGoogle Scholar
11Jouini, A., Sato, H., Yoshikawa, A., Fukuda, T., Boulon, G., Kato, K., and Hanamura, E.: Crystal growth and optical absorption of pure and Ti, Mn-doped MgAl2O4 spinel. J. Cryst. Growth 287, 313 (2006).CrossRefGoogle Scholar
12Lou, F.H. and Ballentyne, D.W.G.: Visible and ultra-violet emission and absorption spectra of MgAl2O4:Cr. J. Phys. C (Proc. Phys. Soc.) 1, 608 (1968).CrossRefGoogle Scholar
13Preudhomme, J. and Tarte, P.: Infrared studies of spinels—III: The normal II–III spinels. Spectrochim. Acta, Part A 27, 1817 (1971).CrossRefGoogle Scholar
14Woosley, J.D., Wood, C., Sonder, F., and Wecks, R.A.: Photoelectric effects in magnesium aluminum spinel. Phys. Rev. B 22, 1065 (1980).CrossRefGoogle Scholar
15Tippins, H.H.: Charge-transfer spectra of transition-metal ions in corundum. Phys. Rev. B 1, 126 (1970).CrossRefGoogle Scholar
16Nassau, K.: The Physics and Chemistry of Colour. (Wiley, New York, 1983).Google Scholar
17Gourier, D., Colle, L., Lejus, A.M., Vivien, D., and Moncorgé, R.: Electron-spin resonance and fluorescence investigation of LaMgAl11O19:Ti3+, a potential tunable laser material. J. Appl. Phys. 63, 1144 (1986).CrossRefGoogle Scholar
18Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr., Sect. A 32, 751 (1976).CrossRefGoogle Scholar
19Macke, A.J.H.: Investigations on the luminescence of titanium-activated stannates and zirconates. J. Solid State Chem. 18, 337 (1976).CrossRefGoogle Scholar
20Bausa, L.E., Vergara, I., Garcia-Solé, J., Strek, W., and Deren, P.J.: Laser-excited luminescence in Ti-doped MgAl2O4 spinel. J. Appl. Phys. 68, 736 (1990).CrossRefGoogle Scholar
21Moulton, P.F.: Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125 (1986).CrossRefGoogle Scholar
22Summers, G.P., White, G.S., Lee, K.H., and Crawford, J.H. Jr.: Radiation damage in MgAl2O4. Phys. Rev. B 21, 2578 (1980).CrossRefGoogle Scholar
23Sato, T., Shirai, M., Tanake, K., Kawabe, Y., and Hanamura, E.: Strong blue emission from Ti-doped MgAl2O4 crystals. J. Lumin. 114, 155 (2005).CrossRefGoogle Scholar
24Jouini, A., Gâcon, J.C., Brenier, A., Ferid, M., and Trabelsi-Ayadi, M.: Spectroscopic investigations of Neodymium cyclotriphosphates. J. Lumin. 99, 365 (2002).CrossRefGoogle Scholar