Published online by Cambridge University Press: 12 March 2019
Three-dimensional (3D) biomimetic scaffolds are critical for tissue engineering to support stem cell culture and organoid formation. Embryonic stem (ES) cells hold promising potential for tissue regeneration and ES cell-derived specific lineages are expected to be strongly influenced by the size of embryoid bodies (EBs). However, the fundamental knowledge needed to achieve the goal of highly reproducible, efficient, and scalable differentiation of how EB size affects differentiation is missing. Here, we used 3D biomimetic scaffolds with highly uniform porous structure to regulate size of EBs and differentiated them toward hepatic fate. The results showed EBs formed within the scaffolds were precisely controlled by pore sizes of the scaffolds. We found that EBs equals to or larger than 180 ± 27 µm maintained the ability to differentiate to hepatic lineage. The 3D biomimetic scaffold provides the effective tools toward accurate regulation of EB sizes for tissue engineering.