Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T22:55:23.404Z Has data issue: false hasContentIssue false

Thiolation of carbon nanotubes and sidewall functionalization

Published online by Cambridge University Press:  01 April 2006

Seamus A. Curran*
Affiliation:
New Mexico State University, Department of Physics, Las Cruces, New Mexico 88003-8001
Jiri Cech
Affiliation:
Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
Donghui Zhang
Affiliation:
New Mexico State University, Department of Physics, and Department of Chemistry and Biochemistry, Las Cruces, New Mexico 88003-8001
James L. Dewald
Affiliation:
New Mexico State University, Department of Physics, Las Cruces, New Mexico 88003-8001
Aditya Avadhanula
Affiliation:
New Mexico State University, Department of Physics, and Department of Chemical Engineering, Las Cruces, New Mexico 88003-8001
Madhuvanthi Kandadai
Affiliation:
New Mexico State University, Department of Physics, and Department of Chemical Engineering, Las Cruces, New Mexico 88003-8001
Siegmar Roth
Affiliation:
Max-Planck-Institute for Solid State Research, 70569 Stuttgart, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have used transmission electron microscopy to observe the structural changes that have occurred in multi-walled carbon nanotubes (MWCNTs) because of acid treatment. After a thiolation reaction of the acid-treated MWCNTs using P4S10 in refluxing toluene, we have also used electron energy loss spectroscopy to characterize the changes on the nanotubes from sidewall functionalization. We have determined that the sulfur content bonded to the nanotubes is 0.6% in terms of the atomic content of the samples. Raman spectroscopy was used to examine the vibrational changes that occurred to the nanotubes as well as identifying new vibrational modes around 500 cm−1 characteristic of carbon-sulfur bonds.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).CrossRefGoogle Scholar
3.Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J., Dekker, C.: Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997).CrossRefGoogle Scholar
4.Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C., Hernández, E.: Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. London, Ser. A 362, 2065 (2004).CrossRefGoogle ScholarPubMed
5.Baughman, R.H., Zakhidov, A.A., de Heer, W.A.: Carbon nanotubes: The route toward applications. Science 297, 787 (2002).CrossRefGoogle ScholarPubMed
6.de Heer, W.A., Chatelain, A., Ugaarte, D.: A carbon nanotube field-emission electron source. Science 270, 1179 (1995).CrossRefGoogle Scholar
7.Sveningsson, M., Morjan, R-E., Nerushev, O.A., Sato, Y., Bäckström, J., Campbell, E.E.B., Rohmund, F.: Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films. Appl. Phys. A 73, 409 (2001).CrossRefGoogle Scholar
8.Blake, R., Gun’ko, Y.K., Coleman, J., Cadek, M., Fonseca, A., Nagy, J.B., Blau, W.J.: A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. J. Am. Chem. Soc. 126, 10226 (2004).CrossRefGoogle ScholarPubMed
9.Rao, S.G., Huang, L., Setyawan, W., Hong, S.: Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 425, 36 (2003).CrossRefGoogle ScholarPubMed
10.Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 1744 (1998).CrossRefGoogle ScholarPubMed
11.Chen, G., Bandow, S., Margine, E.R., Nisoli, C., Kolmogorov, A.N., Crespi, V.H., Gupta, R., Sumanasekera, G.U., Iijima, S., Eklund, P.C.: Chemically doped double-walled carbon nanotubes: Cylindrical molecular capacitors. Phys. Rev. Lett. 90, 257403 (2003).Google Scholar
12.Zhu, W., Minami, N., Kazaoui, S., Kim, Y.: Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states. J. Mater. Chem. 13, 2196 (2003).CrossRefGoogle Scholar
13.Murakami, H., Nomura, T., Nakashima, N.: Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem. Phys. Lett. 378, 481 (2003).Google Scholar
14.Hedderman, T.G., Keogh, S.M., Chambers, G., Byrne, H.J.: Solubilization of SWNTs with organic dye molecules. J. Phys. Chem. B 108, 18860 (2004).CrossRefGoogle Scholar
15.Azamian, B.R., Coleman, K.S., Davis, J.J., Hanson, N., Green, M.L.H.: Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes. Chem. Commun. 4, 366 (2002).CrossRefGoogle Scholar
16.Banerjee, S., Stanislaus, S. Wong: In situ quantum dot growth on multiwalled carbon nanotubes. J. Am. Chem. Soc. 125, 10342 (2003).Google Scholar
17.Day, T.M., Unwin, P.R., Wilson, N.R., Macpherson, J.V.: Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J. Am. Chem. Soc. 127, 10639 (2005).CrossRefGoogle ScholarPubMed
18.Landi, B.J., Castro, S.L., Ruf, H.J., Evans, C.M., Bailey, S.G., Raffaelle, R.P.: CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol. Energy Mater. Sol. Cells 87, 733 (2005).CrossRefGoogle Scholar
19.Niyogi, S., Hamon, M.A., Hu, H., Zhao, B., Bhowmik, P., Sen, R., Itkis, M.E., Haddon, R.C.: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002).Google Scholar
20.McGuire, K., Gothard, N., Gai, P.L., Dresselhaus, M.S., Sumanasekera, G., Rao, A.M.: Synthesis and Raman characterization of boron-doped single-walled carbon nanotubes. Carbon 43, 219 (2005).CrossRefGoogle Scholar
21.Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Birkett, P.R., Rego, C.A.: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2647 (2002).CrossRefGoogle Scholar
22.Xu, J., Xiao, M., Czerw, R., Carroll, D.L.: Optical limiting and enhanced optical nonlinearity in boron-doped carbon nanotubes. Chem. Phys. Lett. 389, 247 (2004).CrossRefGoogle Scholar
23.Likodimos, V., Glenis, S., Lin, C.L.: Electronic properties of boron-doped multiwall carbon nanotubes studied by ESR and static magnetization. Phys. Rev. B 72, 045436 (2005).CrossRefGoogle Scholar
24.Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N. Wong Shi, Shim, M., Li, Y., Kim, W., Utz, P.J., Dai, H.: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984 (2003).CrossRefGoogle ScholarPubMed
25.Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M.: Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology. Nature 394, 52 (1998).CrossRefGoogle Scholar
26.Hamon, M.A., Chen, J., Hu, H., Chen, Y., Itkis, M.E., Rao, A.M., Eklund, P.C., Haddon, R.C.: Dissolution of single-walled carbon nanotubes. Adv. Mater. 11, 834 (1999).3.0.CO;2-R>CrossRefGoogle Scholar
27.Lin, T., Bajpai, V., Ji, T., Dai, L.: Chemistry of carbon nanotubes. Aust. J. Chem. 56, 635 (2003).Google Scholar
28.Lee, K.M., Li, L., Dai, L.: Asymmetric end-functionalization of multi-walled carbon nanotubes. J. Am. Chem. Soc. 127, 4122 (2005).CrossRefGoogle ScholarPubMed
29.Chopra, N., Majumder, M., Hinds, B.J.: Bifunctional carbon nanotubes by sidewall protection. Adv. Funct. Mater. 15, 858 (2005).CrossRefGoogle Scholar
30.Peng, H., Alemany, L.B., Margrave, J.L., Khabashesku, V.N.: Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc. 125, 15174 (2003).CrossRefGoogle ScholarPubMed
31.Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E.: Electronic structure control of single-wall carbon nanotube functionalization. Science 301, 1519 (2003).CrossRefGoogle Scholar
32.Holzinger, M., Vostrowsky, O., Hirsch, A., Hennrich, F., Kappes, M., Weiss, R., Jellen, F.: Sidewall functionalization of carbon nanotubes. Angew. Chem. Int. Ed. Engl. 40, 4002 (2001).Google Scholar
33.Curran, S.A., Ellis, A.V., Vijayaraghavan, A., Ajayan, P.M.: Functionalization of carbon nanotubes using phenosafranin. J. Chem. Phys. 120, 4886 (2004).CrossRefGoogle ScholarPubMed
34.Coleman, J.N., Dalton, A.B., Curran, S., Rubio, A., Davey, A.P., Drury, A., McCarthy, B., Lahr, B., Ajayan, P.M., Roth, S., Barklie, R.C., Blau, W.: Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater. 12, 3 (2000).3.0.CO;2-D>CrossRefGoogle Scholar
35.Lin, Y., Rao, A.M., Sadanadan, B., Kenik, E.A., Sun, Y-P.: Functionalizing multiple-walled carbon nanotubes with aminopolymers. J. Phys. Chem. B 106, 1294 (2002).CrossRefGoogle Scholar
36.Kong, H., Gao, C., Yan, D.: Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412 (2004).CrossRefGoogle ScholarPubMed
37.Fernando, K.A. Shiral, Lin, Y., Wang, W., Kumar, S., Zhou, B., Xie, S., Cureton, L.T., Sun, Y.: Diminished band-gap transitions of single-walled carbon nanotubes in complexation with aromatic molecules. J. Am. Chem. Soc. 126, 10234 (2004).CrossRefGoogle ScholarPubMed
38.Zhang, J., Lee, J-K., Wu, Y., Murray, R.W.: Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett. 3, 403 (2003).CrossRefGoogle Scholar
39.Curran, S.A., Ajayan, P.M., Blau, W.J., Carroll, D.L., Coleman, J.N., Dalton, A.B., Davey, A.P., Drury, A., McCarthy, B., Maier, S., Strevens, A.: A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics. Adv. Mater. 10, 1091 (1998).3.0.CO;2-L>CrossRefGoogle Scholar
40.Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., Hirsch, A.: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760 (2002).CrossRefGoogle ScholarPubMed
41.Nakajima, T., Kasamatsu, S., Matsuo, Y.: Synthesis and characterization of fluorinated carbon nanotube. Eur. J. Solid State Inorg. Chem. 33, 831 (1996).Google Scholar
42.Kawasaki, S., Komatsu, K., Okino, F., Touhara, H., Kataura, H.: Fluorination of open- and closed-end single-walled carbon nanotubes. Phys. Chem. Chem. Phys. 6, 1769 (2004).Google Scholar
43.Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H., Friend, R.H.: Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116 (1999).CrossRefGoogle Scholar
44.Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of single-walled carbon nanotubes. Science 282, 95 (1998).Google Scholar
45.Lin, Y., Zhou, B., Fernado, K.A.S., Liu, P., Allard, L.F., Sun, Y-P.: Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules 36, 7199 (2003).CrossRefGoogle Scholar
46.Qin, S., Qin, D., Ford, W.T., Resasco, D.E., Herrera, J.E.: Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37, 752 (2004).Google Scholar
47.Viswanathan, G., Chakrapani, N., Yang, H., Wei, B., Chung, H., Cho, K., Ryu, C.Y., Ajayan, P.M.: Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc. 125, 9258 (2003).CrossRefGoogle ScholarPubMed
48.Lou, X., Detrembleur, C., Sciannamea, V., Pagnoulle, C., Jérôme, R.: Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes. Polymer 45, 6087 (2004).CrossRefGoogle Scholar
49.Chaudhary, S., Kim, J.H., Singh, K.V., Ozkan, M.: Fluorescence microscopy visualization of single-walled carbon nanotubes using semiconductor nanocrystals. Nano Lett. 4, 2415 (2004).Google Scholar
50.Dresselhaus, M.S., Dresselhaus, G., Jorio, A., Filho, A.G. Souza, Saito, R.: Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043 (2002).CrossRefGoogle Scholar
51.Kastner, J., Pichler, T., Kuzmany, H., Curran, S., Blau, W., Weldon, D.N., Delamesiere, M., Draper, S., Zandbergen, H.: Resonance Raman and infrared spectroscopy of carbon nanotubes. Chem. Phys. Lett. 221, 53 (1994).CrossRefGoogle Scholar
52.Jorio, A., Filho, A.G. Souza, Dresselhaus, G., Dresselhaus, M.S., Swan, A.K., Unlu, M.S., Goldberg, B.B., Pimenta, M.A., Hafner, J.H., Lieber, C.M., Saito, R.: G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 65, 155412 (2002).Google Scholar
53.Tan, P., An, L., Liu, L., Guo, Z., Czerw, R., Carroll, D.L., Ajayan, P.M., Zhang, N., Guo, H.: Probing the phonon dispersion relations of graphite from the double resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys. Rev. B 66, 245410 (2002).CrossRefGoogle Scholar
54.Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).Google Scholar
55.Saito, R., Grüneis, A., Samsonidze, G.G., Brar, V.W., Dresselhaus, G., Dresselhaus, M.S., Jorio, A., Cançado, L.G., Fantini, C., Pimenta, M.A., Filho, A.G. Souza: Double resonance Raman spectroscopy of single-wall carbon nanotubes. N. J. Phys. 5, 1571 (2003).CrossRefGoogle Scholar
56.Satishkumar, B.C., Govindaraj, A., Mofokeng, J., Subbanna, G.N., Rao, C.N.R.: Novel experiments with carbon nanotubes: opening, filling, closing and functionalizing nanotubes. J. Phys. B: At. Mol. Opt. Phys. 29, 4925 (1996).CrossRefGoogle Scholar
57.Zhang, N., Xie, J., Varadan, V.K.: Functionalization of carbon nanotubes by potassium permanganate assisted with phase transfer catalyst. Smart Mater. Struct. 11, 962 (2002).CrossRefGoogle Scholar
58.Ellis, A.V., Vijayamohanan, K., Goswami, R., Chakrapani, N., Ramanathan, L.S., Ajayan, P.M., Ramanath, G.: Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett. 3, 279 (2003).CrossRefGoogle Scholar
59.Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, K., Huffman, C.B., Rodriguez–Macias, F., Shon, Y., Lee, T.R., Colbert, D.T., Smalley, R.E.: Fullerene pipes. Science 280, 1253 (1998).Google Scholar
60.Sudalai, A., Kanagasabapathy, S., Benicewicz, B.S.: Phosphorus pentasulfide: A mild and versatile catalyst/reagent for the preparation of dithiocarboxylic esters. Org. Lett. 2, 3213 (2000).Google Scholar
61.Livneh, T., Haslett, T.L., Moskovits, M.: Distinguishing disorder-induced bands from allowed Raman bands in graphite. Phys. Rev. B 66, 195110 (2002).CrossRefGoogle Scholar
62.Liu, G., Fang, Q., Xu, W., Chen, H., Wang, C.: Vibration assignment of carbon-sulfur bond in 2-thione-1,3-dithiole-4,5-dithiolate derivatives. Spectrochem. Acta A Mol. Biomol. Spectrosc. 60, 541 (2004).CrossRefGoogle ScholarPubMed
63.Dong, J., Luo, L., Liang, P-H., Dunaway–Mariano, D., Carey, P.R.: Raman difference spectroscopic studies of dithiobenzoyl substrate and product analogs binding to the enzyme dehalogenase: π-electron polarization is prevented by the C=O to C=S substitution. J. Raman Spectrosc. 31, 365 (2000).3.0.CO;2-L>CrossRefGoogle Scholar
64.Chakrapani, N., Curran, S., Wei, B., Ajayan, P.M., Carrillo, A., Kane, R.S.: Spectral fingerprinting of structural defects in plasma– treated carbon nanotubes. J. Mater. Res. 18, 2515 (2003).CrossRefGoogle Scholar
65.Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys. Rev. B 64, 075414 (2001).CrossRefGoogle Scholar