Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:37:46.711Z Has data issue: false hasContentIssue false

Thin silicon dioxide and nitrided oxide using rapid thermal processing for trench capacitors

Published online by Cambridge University Press:  31 January 2011

Kenji Yoneda
Affiliation:
Kyoto Research Laboratory, Matsushita Electronics Corporation, 19, Nishikujo-Kasugacho, Minami-ku, Kyoto 601, Japan
Yoshihiro Todokoro
Affiliation:
Kyoto Research Laboratory, Matsushita Electronics Corporation, 19, Nishikujo-Kasugacho, Minami-ku, Kyoto 601, Japan
Morio Inoue
Affiliation:
Kyoto Research Laboratory, Matsushita Electronics Corporation, 19, Nishikujo-Kasugacho, Minami-ku, Kyoto 601, Japan
Get access

Abstract

Electrical characteristics of trench capacitors using RTO (Rapid Thermal Oxidation) oxides, nitroxides, and reoxidized nitroxides as the gate insulators are discussed. High temperature RTO is effective in preventing oxide thinning at the trench corner, and so the dielectric strength of trench capacitors is improved drastically. The mean time to failure (MTTF) of trench capacitors using RTO is more than ten times longer than that of trench capacitors using conventional furnaces. Using reoxidized nitroxides as the gate insulator, superior charge to breakdown (QBD) is obtained. RTP (Rapid Thermal Processing) is superior to the process using the conventional furnace for the gate insulators of trench capacitors. Improvements in temperature uniformity, repeatability, and lessening of slip line formation are essential for RTP equipment to be practical.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Imai, K., Yamabe, K., Tsunashima, Y., Iwai, K., Tashiro, K., and Tango, H., IEDM Tech. Dig., 702 (1985).Google Scholar
2.Marcus, R. B. and Sheng, T. T., J. Electrochem. Soc. 129, 1278 (1982).CrossRefGoogle Scholar
3.Irene, E. A., Tierney, E., and Angillelo, J., J. Electrochem. Soc. 129, 2594 (1982).CrossRefGoogle Scholar
4.Nulman, J., Kurusius, J. P., and Gat, A., IEEE Electron Device Lett. EDL-6, 205 (1985).CrossRefGoogle Scholar
5.Moslehi, M. M. and Saraswat, S. C., Appl. Phys. Lett. 47, 1353 (1985).CrossRefGoogle Scholar
6.Poagon, J. P., Grob, J. J., and Stuck, R., J. Appl. Phys. 59, 3921 (1986).Google Scholar
7.Sato, Y. and Kikuchi, K., J. Electrochem. Soc. 133, 652 (1986).CrossRefGoogle Scholar
8.Moslehi, M. M., Han, C. J., and Saraswat, K. C., J. Electrochem. Soc. 132, 2189 (1985).CrossRefGoogle Scholar
9.Hori, T., Naito, Y., Iwasaki, H., and Esaki, H., IEEE Electron Device Lett. EDL-7, 669 (1986).CrossRefGoogle Scholar
10.Inoue, M. and Yoneda, K., in Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, edited by Hodul, D., Gelpey, J. C., Green, M. L., and Seidel, T. E. (Mater. Res. Soc. Symp. Proc. 146, Pittsburgh, PA, 1989), p. 283.Google Scholar
11.Horiike, Y., Okano, H., Yamazaki, T., and Horie, H., Jpn. J. Appl. Phys. 20, 1817 (1981).CrossRefGoogle Scholar
12.Hori, T., Iwasaki, H., Naito, Y., and Esaki, H., IEEE Trans. Electron Devices ED-34, 11, 2238 (1987).CrossRefGoogle Scholar