Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T14:18:27.110Z Has data issue: false hasContentIssue false

Thin films with nanometer-scale pillar microstructure

Published online by Cambridge University Press:  31 January 2011

K. Robbie
Affiliation:
Department of Physics, Queen's University, Kingston, Ontario, Canada K7L 3N6
C. Shafai
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G7
M. J. Brett
Affiliation:
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G7
Get access

Abstract

Thin films possessing microstructure composed of isolated vertical pillars were deposited by glancing angle deposition (GLAD) without the need for subsequent etch processing. The GLAD technique uses substrate rotation and oblique angle flux incidence to deposit a porous columnar thin film with engineered microstructures. Thin films with a pillar microstructure were fabricated from a variety of metals, metal oxides and fluorides, and semiconductors. The rate and incident angle of vapor flux, as well as the substrate rotation speed during deposition, were found to critically affect pillar microstructure. Thin films with pillar diameters and densities as low as 30 nm and 3 pillars per μm2, respectively, were deposited. The low stress, high surface area, and porous nature of these films suggests use of pillar microstructure films in optical, chemical, biological, mechanical, magnetic, and electrical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fischer, P.B., Dai, K., Chen, E., and Chou, S.Y., J. Vac. Sci. Technol. B 11, 2524 (1993).CrossRefGoogle Scholar
2.Umbach, C.C., Weselak, B.W., Blakely, J.M., and Shen, Q., J. Vac. Sci. Technol. B 14, 3420 (1996).CrossRefGoogle Scholar
3.Krauss, P.R., Fisher, P.B., and Chou, S.Y., J. Vac. Sci. Technol. B 12, 3639 (1994).CrossRefGoogle Scholar
4.Chen, W. and Ahmed, H., J. Vac. Sci. Technol. B 11, 2519 (1993).CrossRefGoogle Scholar
5.van Kranenburg, H. and Lodder, J.C., Mater. Sci. Eng. R. Rep. 11, 293 (1994).Google Scholar
6.Abelmann, L. and Lodder, C., Thin Solid Films 305, 1 (1997).CrossRefGoogle Scholar
7.Tait, R.N., Smy, T., and Brett, M.J., Thin Solid Films 226, 196 (1993).CrossRefGoogle Scholar
8.Messier, R., Gehrke, T., Frankel, C., Venugopal, V.C., Otaño, W., and Lakhtakia, A., J. Vac. Sci. Technol. A 15, 2148 (1997).CrossRefGoogle Scholar
9.Robbie, K. and Brett, M.J., J. Vac. Sci. Technol. A 15, 1460 (1997).CrossRefGoogle Scholar
10.Robbie, K., Brett, M.J., and Lakhtakia, A., Nature 384, 616 (1996).CrossRefGoogle Scholar
11.Robbie, K., Friedrich, L.J., Dew, S.K., Smy, T., and Brett, M.J., J. Vac. Sci. Technol. A 13, 1032 (1995).CrossRefGoogle Scholar
12.Lakhtakia, A., Messier, R., Brett, M.J., and Robbie, K., Innovat. Mater. Res. 1, 165 (1996).Google Scholar
13.Robbie, K., Brett, M.J., and Lakhtakia, A., J. Vac. Sci. Technol. A 13, 2991 (1995).CrossRefGoogle Scholar
14.Young, N. and Kowal, J., Nature 183, 104 (1959).CrossRefGoogle Scholar
15.Robbie, K., Hnatiw, A.J.P, Brett, M.J., MacDonald, R.I., and McMullin, J.N., Elect. Lett. 33, 1213 (1997).CrossRefGoogle Scholar
16.Lakhtakia, A. and Messier, R., Mater. Res. Innov. 1, 145 (1998).CrossRefGoogle Scholar
17.Sit, J.C., Vick, D., Robbie, K., and Brett, M.J., J. Mater. Res. 14, 1197 (1999).CrossRefGoogle Scholar
18.Robbie, K., Sit, J.C., and Brett, M.J., J. Vac. Sci. Technol. B 16, 1115 (1998).CrossRefGoogle Scholar
19.Liu, F., Umlor, M.T., Shen, L., Weston, J., Eads, W., Barnard, J.A., and Mankey, G.J., J. Appl. Phys. (1999, in press).Google Scholar
20.Thornton, J.A., J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
21.Lamy, D., Pierce, A.C., and Heimann, R.B., J. Mater. Res. 11, (1996).CrossRefGoogle Scholar
22.Selected Papers on Linear Optical Composite Materials edited by Lakhtakia, A., (SPIE Optical Engineering Press, Bellingham, WA, 1996).Google Scholar