Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-02T22:14:04.493Z Has data issue: false hasContentIssue false

Thin film epitaxy and near bulk semiconductor to metal transition in VO2/NiO/YSZ/Si(001) heterostructures

Published online by Cambridge University Press:  22 November 2012

Roya Molaei*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7906
Mohammad Reza Bayati
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7906
Jagdish Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7906
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have grown VO2/NiO epitaxial thin films by pulsed laser deposition where integration with Si(001) substrates was achieved by cubic yttria-stabilized zirconia (YSZ) buffer layer. The most interesting aspect of this work is that a complete relaxation along c-axis of VO2 is achieved in these large misfit systems through the domain matching epitaxy paradigm, which is critical for controlling the semiconductor to metal transition (SMT) characteristics. Regarding x-ray diffraction and cross-sectional transmission electron microscopy results, the epitaxial relationship across the YSZ/Si(001) interface was (001)[100]YSZ‖(001)[100]Si. In the case of YSZ/NiO interface, the epitaxial relationship was $(001)[010]_{{\rm{YSZ}}} \parallel (111)[00\overline 1 ]_{{\rm{NiO}}} $. The epitaxial relationship at the NiO/VO2 interface was determined to be $(010)[001]_{{\rm{VO2}}} \parallel (111)[00\overline 1 ]_{{\rm{NiO}}} $. The SMT characteristics of these fully relaxed films were determined, and a transition temperature of 341 K with amplitude over four orders of magnitude and the hysteresis of 3.4 K hysteresis were obtained, which are close to those of the bulk high quality single crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eyert, V.: The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys. 11, 650 (2002).CrossRefGoogle Scholar
Longo, J. and Kierkegaard, P.: A refinement of the structure of VO2. Acta Chem. Scand. 24, 420 (1970).CrossRefGoogle Scholar
Morin, F.J.: Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 3, 34 (1959).CrossRefGoogle Scholar
Ruzmetov, D., Heiman, D., Claflin, B.B., Narayanamurti, V., and Ramanathan, S.: Hall carrier density and magnetoresistance measurements in thin-film vanadium dioxide across the metal-insulator transition. Phys. Rev. B 79, 153107 (2009).CrossRefGoogle Scholar
Gupta, A., Aggarwal, R., Gupta, P., Dutta, T., Narayan, R.J., and Narayan, J.: Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si (001). Appl. Phys. Lett. 95, 111915 (2009).CrossRefGoogle Scholar
Ko, C. and Ramanathan, S.: Stability of electrical switching in thin film vanadium oxide upon multiple thermal cycling across the phase transition boundary. J. Appl. Phys. 104, 086105 (2008).CrossRefGoogle Scholar
Kato, K., Song, P.K., Odaka, H., and Shigesato, Y.: Study on thermochromic VO2 films grown on ZnO-coated glass substrates for ‘‘smart windows’’. Jpn. J. Appl. Phys. 42, 6523 (2003).CrossRefGoogle Scholar
Becker, M.F., Buckman, A.B., Walser, R.M., Lepine, T., Georges, P., and Brun, A.: Femtosecond laser excitation of the semiconductor‐metal phase transition in VO2. Appl. Phys. Lett. 65, 1507 (1994).CrossRefGoogle Scholar
Soltani, M., Chaker, M., Haddad, E., and Kruzelesky, R.V.: Thermochromic vanadium dioxide smart coatings grown on Kapton substrates by reactive pulsed laser deposition. J. Vac. Sci. Technol., A 24, 612 (2006).CrossRefGoogle Scholar
Rajendra Kumar, R.T., Karunagaran, B., Mangalaraj, D., Narayandass, S.K., Manoravi, P., Joseph, M., and Gopal, V.: Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors. Sens. Actuators, A 107, 62 (2003).CrossRefGoogle Scholar
Chivian, J.S., Scott, M.W., Case, W.E., and Krasutsky, N.J.: An improved scan laser with a VO2 programmable mirror. IEEE J. Quantum Electron. 21, 383 (1985).CrossRefGoogle Scholar
Goodenough, J.B.: The two components of the crystallographic transition in VO2. J. Solid State Chem. 3, 490 (1971).CrossRefGoogle Scholar
Lazarovits, B., Kim, K., Haule, K., and Kotliar, G.: Effects of strain on the electronic structure of VO2. Phys. Rev. B 81, 115117 (2010).CrossRefGoogle Scholar
Okimura, K., Sakai, J., and Ramanathan, S.: In situ x-ray diffraction studies on epitaxial VO2 films grown on c-Al2O3 during thermally induced insulator-metal transition. J. Appl. Phys. 107, 063503 (2010).CrossRefGoogle Scholar
Muraoka, Y., Ueda, Y., and Hiroi, Z.: Large modification of the metal–insulator transition temperature in strained VO2 films grown on TiO2 substrates. J. Phys. Chem. Solids 63, 965 (2002).CrossRefGoogle Scholar
Fang, S.F., Adomi, K., Iyer, S., Morkoç, H., Zabel, H., Choi, C., and Otsuka, N.: Gallium arsenide and other compound semiconductors on silicon. J. Appl. Phys. 68, R31 (1990).CrossRefGoogle Scholar
Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
Bandara, J. and Weerasinghe, H.: Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol. Energy Mater. Sol. Cells 85, 385 (2005).CrossRefGoogle Scholar
Hwang, D.G., Lee, S.S., and Park, C.M.: Effect of roughness slope on exchange biasing in NiO spin valves. Appl. Phys. Lett. 72, 162 (1998).CrossRefGoogle Scholar
Chan, I.M., Hsu, T.Y., and Hong, F.C.: Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81, 1899 (2002).CrossRefGoogle Scholar
Hotovy, I., Huran, J., Siciliano, P., Capone, S., Spiess, L., and Rehacek, V.: The influences of preparation parameters on NiO thin film properties for gas-sensing application. Sens. Actuators, B 78, 126 (2001).CrossRefGoogle Scholar
Granqvist, C.G., Avendano, E., and Azens, A.: Electrochromic coatings and devices: Survey of some recent advances. Thin Solid Films 442, 201 (2003).CrossRefGoogle Scholar
Wei, B., Yamamoto, S., Ichikawa, M., Li, C., Fukuda, T., and Taniguchi, Y.: High-efficiency transparent organic light-emitting diode with one thin layer of nickel oxide on a transparent anode for see-through-display application. Semicond. Sci. Technol. 22, 788 (2007).CrossRefGoogle Scholar
Yang, M., Shi, Z., Feng, J., Pu, H., Li, G., Zhou, J., and Zhang, Q.: Copper doped nickel oxide transparent p-type conductive thin films deposited by pulsed plasma deposition. Thin Solid Films 519, 3021 (2011).CrossRefGoogle Scholar
Gupta, A., Narayan, J., and Dutta, T.: Near bulk semiconductor to metal transition in epitaxial VO2 thin films. Appl. Phys. Lett. 97, 151912 (2010).CrossRefGoogle Scholar
Gupta, A., Singhal, R., Narayan, J., and Avasthi, D.K.: Electronic excitation induced controlled modifications of semiconductor-to-metal transition in epitaxial VO2 thin films. J. Mater. Res. 26, 2901 (2011).CrossRefGoogle Scholar
Narayan, J. and Bhosle, V.M.: Phase transition and critical issues in structure-property correlations of vanadium oxide. J. Appl. Phys. 100, 103524 (2006).CrossRefGoogle Scholar
Riggs, B.C., Dias, A.D., Schiele, N.R., Cristescu, R., Huang, Y., Corr, D.T., and Chrisey, D.B.: Matrix-assisted pulsed laser methods for biofabrication. MRS Bull. 36, 1043 (2011).CrossRefGoogle Scholar
Koch, C.F., Johnson, S., Kumar, D., Jelinek, M., Chrisey, D.B., Doraiswamy, A., Jin, C., Narayan, R.J., and Mihailescu, I.N.: Pulsed laser deposition of hydroxyapatite thin films. Mater. Sci. Eng., C 27, 484 (2007).CrossRefGoogle Scholar
Aggarwal, R., Jin, C.M., Pant, P., Narayan, J., and Narayan, R.J.: Growth of biepitaxial zinc oxide thin films on silicon (100) using yttria-stabilized zirconia buffer layer. Appl. Phys. Lett. 93, 251905 (2008).CrossRefGoogle Scholar
Wang, S.J., Ong, C.K., You, L.P., and Xu, S.Y.: Epitaxial growth of yttria-stabilized zirconia oxide thin film on natively oxidized silicon wafer without an amorphous layer. Semicond. Sci. Technol. 15, 836 (2000).CrossRefGoogle Scholar
Bayati, M.R., Gupta, P., Molaei, R., Narayan, R.J., and Narayan, J.: Phase tuning, thin film epitaxy, interfacial modeling, and properties of YSZ-buffered TiO2 on Si(001) substrate. Cryst. Growth Des. 12, 4535 (2012).CrossRefGoogle Scholar
Koo, H., Yoon, S., Kwon, O., Ko, K.E., Shin, D., Bae, S.H., Chang, S.H., and Park, C.: Effect of lattice misfit on the transition temperature of VO2 thin film. J. Mater. Sci. 47, 6397 (2012).CrossRefGoogle Scholar
Bayati, M.R., Molaei, R., Narayan, R.J., Narayan, J., Zhou, H., and Pennycook, S.J.: Domain epitaxy in TiO2/α-Al2O3 thin film heterostructures with Ti2O3 transient layer. Appl. Phys. Lett. 100, 251606 (2012).CrossRefGoogle Scholar