Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:47:07.876Z Has data issue: false hasContentIssue false

Thickness dependence of microstructural evolution of ZnO films deposited by rf magnetron sputtering

Published online by Cambridge University Press:  31 January 2011

Yong Eui Lee
Affiliation:
Inter-University Semiconductor Research Center (ISRC) and School of Material Science and Engineering, Seoul National University, Seoul 151–742, Korea
Young Jin Kim
Affiliation:
Department of Elec. and Advanced Materials Engineering, Kyonggi University, Suwon 440–760, Korea
Hyeong Joon Kim
Affiliation:
Inter-University Semiconductor Research Center (ISRC) and School of Material Science and Engineering, Seoul National University, Seoul 151–742, Korea
Get access

Abstract

The microstructural evolution, including preferred orientation and surface morphology, of ZnO films deposited by rf magnetron sputtering was investigated with increasing film thickness. Preferred orientation of the ZnO films changed from (0002) → (1011) → (1120) and fine and dense columnar grains also changed to large elongated grains with increasing thickness. Such selective texture growth was explained with an effect of highly energetic species bombardment on the growing film surface. The relationship between preferred orientation change and microstructural evolution was also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kino, G. S. and Wagers, R. S., J. Appl. Phys. 44, 1480 (1973).CrossRefGoogle Scholar
2.Lehmann, H. W. and Widmer, R., J. Appl. Phys. 44, 3868 (1973).CrossRefGoogle Scholar
3.Zhang, D. H. and Brodie, D. E., Thin Solid Films 251, 151 (1994).CrossRefGoogle Scholar
4.Lotgerling, F. K., J. Inorg. Nucl. Chem. 9, 113 (1959).CrossRefGoogle Scholar
5. JCPDS card #36–1451.Google Scholar
6.Leamy, H. J., Gilmer, G. H., and Dirks, A. G., in Current Topics in Materials Science, edited by Kaldis, E. (Amsterdam, 1980), Vol. 6, pp. 309344.Google Scholar
7.Thornton, J. A., J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
8.Bragg, W. L. and Darbyshire, J. A., Trans. Faraday Soc. 28, 552 (1932).CrossRefGoogle Scholar
9.Cho, H. S. and Kim, H. J., J. Appl. Phys. 78, 418 (1995).CrossRefGoogle Scholar
10.van der Drift, A., Philips Res. Rep. 22, 267 (1967).Google Scholar
11.Seel, S. C., Carel, R., and Thompson, C. V., in Polycrystalline Thin Films: Structures, Texture, Properties, and Applications II, edited by Frost, H. J., Parker, M. A., Ross, C. A., and Holm, E. A. (Mater. Res. Soc. Symp. Proc. 403, Pittsburgh, PA, 1996), p. 63.Google Scholar
12.Pelleg, J., Zerin, L. Z., and Lungo, S., Thin Solid Films 197, 117 (1991).CrossRefGoogle Scholar
13.Bauer, E., in Single Crystal Films, edited by Francombe, M. H. and Sato, H. (Pergamon, Oxford, 1964), p. 43.Google Scholar
14.Petrov, I., Orlinov, V., and Misiuk, A., Thin Solid Films 120, 55 (1984).CrossRefGoogle Scholar
15.Kobiakov, I. B., Solid State Commun. 35, 305 (1980).CrossRefGoogle Scholar
16.Lee, Y. E., Lee, J. B., Kim, Y. J., Yang, H. K., Park, J. C., and Kim, H. J., J. Vac. Sci. Technol. A 14, 1943 (1996).CrossRefGoogle Scholar
17.Robinson, R. S., J. Vac. Sci. Technol. 16, 185 (1979).CrossRefGoogle Scholar
18.Rossnagel, S. M., J. Vac. Sci. Technol. A 7, 1025 (1989).CrossRefGoogle Scholar
19.Lee, Y. E., Kim, S. G., Kim, Y. J., and Kim, H. J., J. Vac. Sci. Technol. A 15, 1194 (1997).CrossRefGoogle Scholar
20.Tominaga, K., Sueyoshi, T., Munfei, C., and Shintani, Y., Jpn. J. Appl. Phys. 32, 4131 (1993).CrossRefGoogle Scholar
21.Tominaga, K., Sueyoshi, Y., Imai, H., and Shirai, M., Jpn. J. Appl. Phys. 31, 3009 (1992).CrossRefGoogle Scholar
22. S. B. Krupanidhi and Sayer, M., J. Appl. Phys. 56, 3308 (1984).Google Scholar
23.Harper, J. M. E., Cuomo, J. J., and Hentzell, H. T. G., Appl. Phys. Lett. 43, 547 (1983).CrossRefGoogle Scholar
24.Hada, T., Wasa, K., and Hayakawa, J., Thin Solid Films 7, 135 (1971).CrossRefGoogle Scholar
25.Dobrev, D., Thin Solid Films 92, 41 (1982).CrossRefGoogle Scholar
26.Harper, J. M. and Gambino, R. J., J. Vac. Sci. Technol. 16, 1901 (1979).CrossRefGoogle Scholar
27.Bradley, R. M., Harper, J. M. E., and Smith, D. A., J. Appl. Phys. 60, 4160 (1981).CrossRefGoogle Scholar
28.Yu, L. S., Harper, J.M. E., Cuomo, J. J., and Smith, D. A., J. Vac. Sci. Technol. A 4, 443 (1986).CrossRefGoogle Scholar
29. M. Marinov and Dobrev, D., Thin Solid Films 42, 265 (1977).Google Scholar