Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T18:36:49.178Z Has data issue: false hasContentIssue false

Thickness control of solution deposited YBCO superconducting films by use of organic polymeric additives

Published online by Cambridge University Press:  31 January 2011

S. Morlens
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB) C.S.I.C., Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
N. Romà
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB) C.S.I.C., Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
S. Ricart*
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB) C.S.I.C., Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
A. Pomar
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB) C.S.I.C., Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
T. Puig
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB) C.S.I.C., Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
X. Obradors
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB) C.S.I.C., Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We show that the thickness of yttrium–barium–copper–oxide (YBCO) superconducting films grown from trifluoroacetate precursors can be strongly modified using polymeric additives, while deposition conditions by spin or dip coating remain unchanged. A screening of different families of organic additives has been performed, and the best results have been achieved using polymers having an oxygen functionalized backbone. Two different polymeric additives, polyvinyl pyrrolidone (PVP) and poly(ethylene glycol) (PEG), have been more thoroughly investigated, and thermal analysis suggests that PEG is the most promising alternative because the pyrolysis step of the new complex precursors remains sharp and narrow and hence the final homogeneity of the film is preserved. The combination of anhydrous trifluoroacetic acid (TFA) solutions and poly(ethylene-glycol) (PEG8000) as additive can produce an increase of the YBCO film thickness up to 300%, while keeping a fast pyrolysis process and high critical current densities.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Emergo, R.L.S., Wu, J.Z., Aytug, T.Christen, D.K.: Thickness dependence of superconducting critical current density in vicinal YBa2Cu3O7−δ thick films. Appl. Phys. Lett. 85, 618 2004CrossRefGoogle Scholar
2Foltyn, S.R., Jia, Q.X., Arendt, P.N., Kinder, L., Fan, Y.Smith, J.F.: Relationship between film thickness and the critical current of YBa2Cu3O7−δ coated conductors. App. Phys. Lett. 75, 3692 1999CrossRefGoogle Scholar
3Kang, B.W., Goyal, A., Lee, D.R., Mathis, J.E., Specht, E.D., Martin, P.M., Kroeger, D.M., Paranthaman, M.Sathyamurthy, S.: Comparative study of thickness dependence of critical current density of YBa2Cu3O7−δ on (100) SrTiO3 and on rolling-assisted biaxially textured substrates. J. Mater. Res. 17, 1750 2002CrossRefGoogle Scholar
4Foltyn, S.R., Tiwari, P., Dye, R.C., Le, M.Q.Wu, X.D.: Pulsed laser deposition of thick YBa2Cu3O7−δ films with JC ⩾_1 MA/cm2. Appl. Phys. Lett. 63, 1848 1993CrossRefGoogle Scholar
5Luborsky, F.E., Kwasnick, R.F., Borst, K., Garbauskas, M.F., Hall, E.L.Curran, M.J.: Reproducible sputtering and properties of Y–Ba–Cu–O films of various thicknesses. J. Appl. Phys. 64, 6388 1988CrossRefGoogle Scholar
6Prusseit, W., Nemetschek, R., Hoffmann, C., Sigl, G., Lükemann, A.Zinder, H.: ISD process development for coated conductors. Physica C 426, 866–871 2005Google Scholar
7Paranthaman, M., Park, C., Cui, X., Goyal, A.I., Lee, D.F., Martin, P.M., Verebelyi, D.T., Norton, D.P., Christen, D.K.Kroeger, D.M.: YBa2Cu3O7−y coated conductors with high engineering current density. J. Mater. Res. 15, 2647 2000CrossRefGoogle Scholar
8Zeng, J., Lian, J., Wang, L., Chou, P.Ignatiev, A.: HRTEM characterization of YBa2Cu3O7−δ thick films on LaAlO3 substrates. Physica C 405, 127 2004CrossRefGoogle Scholar
9Rupich, M.W., Verebelyi, D.T., Zhang, W., Kodenkandath, T.Li, X.: Research and development of biaxially textured IBAD-GZO templates for coated superconductors. Mater. Res. Soc. Bull. 29, 572 2004CrossRefGoogle Scholar
10Fuji, H., Teranishi, R., Kito, Y., Matsuda, J., Nakaoka, K., Izumi, T., Shiohara, Y., Yamada, Y., Yajima, A.Saitoh, T.: Progress on TFA-MOD coated conductor development. Physica C 426, 938 2005CrossRefGoogle Scholar
11Gupta, A., Jagannathan, R., Cooper, E.I., Giess, E.A., Landman, J.I.Hussey, B.W.: Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl. Phys. Lett. 52, 2077 1988CrossRefGoogle Scholar
12McIntyre, P.C., Cima, M.J., Ng, M.F., Chiu, R.C.Rhine, W.E.: Texture development in Ba2YCu3O7−x films from trifluoroacetate precursors. J. Mater. Res. 5, 2771 1990CrossRefGoogle Scholar
13Smith, A., Cima, M.J.Sonnenberg, N.: High critical current density thick MOD-derived YBCO films. IEEE Trans. Appl. Supercond. 9, 1531 1999CrossRefGoogle Scholar
14Honjo, T., Nakamura, Y., Teranishi, R., Tokunaga, Y., Fuji, H., Shibata, J., Asada, S., Izumi, T., Shiohara, Y., Iijima, Y., Saitoh, T., Kaneko, A.Murata, K.: Fabrication and growth mechanism of YBCO coated conductors by TFA-MOD process. Physica C 392, 873 2003CrossRefGoogle Scholar
15Araki, T.Hirabayashi, I.: Review of a chemical approach to YBa2Cu3O7−x coated superconductors metalorganic deposition using trifluoroacetates. Supercond. Sci. Technol. 16, R71 2003CrossRefGoogle Scholar
16Obradors, X., Puig, T., Pomar, A., Sandiumenge, F., Piñol, S., Mestres, N., Castaño, O., Coll, M., Cavallaro, A., Palau, A., Gázquez, J., González, J.C., Gutiérrez, J., Romá, N., Ricart, S., Moretó, J.M., Rossell, M.D.van Tendeloo, G.: Chemical solution deposition: A path towards low cost coated conductors. Supercond. Sci. Technol. 17, 1055 2004CrossRefGoogle Scholar
17Fuji, H., Honjo, T., Nakamura, Y., Izumi, T., Shiohara, Y., Teranishi, R., Yoshimura, M., Iijima, Y.Saitoh, T.: Fabrication processing of Y123 coated conductors by MOD-TFA method. Physica C 378, 1013, 2002CrossRefGoogle Scholar
18Nakaoka, K., Tokunaga, Y., Matsuda, J.S., Fuji, H., Koyama, S., Teranishi, R., Izumi, T., Shiohara, Y., Watanabe, T., Yamada, Y., Goto, T., Yoshinaka, A.Yajima, A.: Fabrication of YBCO coated conductors using advanced TFA-MOD process. Physica C 426, 954, 2005CrossRefGoogle Scholar
19Zalamova, K., Roma, N., Pomar, A., Morlens, S., Puig, T., Gazquez, J., Carrillo, A-E., Sandiumenge, F., Ricart, S., Mestres, N.Obradors, X.: Smooth stress relief of trifluoroacetate metal-organic solutions for YBa2Cu3O7 film growth. Chem. Mater. 43, 178 2006Google Scholar
20Romà, N., Morlens, S., Zalamova, K., Ricart, S., Moretó, J.M., Pomar, A., Puig, T.Obradors, X.: Acid anhydrides: A simple route to highly pure organometallic solutions for superconducting films. Supercond. Sci. Technol. 19, 521 2006CrossRefGoogle Scholar
21Wojtczak, W., Hampden-Smith, M.Duesler, E.N.: Synthesis, characterization, and thermal behavior of polydentate ligand adducts of barium trifluoroacetate. Inorg. Chem. 37, 1781 1998CrossRefGoogle Scholar
22Zang, J., Hubert-Pfalzgraf, L.G.Luneau, D.: Synthesis, characterization and molecular structures of Cu (II) and Ba (II) fluorinated carboxylate complexes. Polyhedron. 24, 1185 2005CrossRefGoogle Scholar
23Dawley, J.T., Clem, P.G., Boyle, T.J., Ottley, L.M., Overmyer, D.L.Siegal, M.P.: Rapid processing method for solution deposited YBa2Cu3O7−δ thin films. Physica C 402, 143 2004CrossRefGoogle Scholar
24Jia, Q.X., McCleskey, T.M., Burrell, A.K., Lin, Y., Collis, G.E., Wang, H., Li, A.D.Q.Foltyn, S.R.: Polymer-assisted deposition of metal-oxide films. Nat. Mater. 3, 529 2004CrossRefGoogle ScholarPubMed
25Takenaka, S.Kozuka, H.: Solgel preparation of single-layer, 0.75 μm thick lead zirconate titanate films from lead nitrate-titanium and zirconium alkoxide solutions containing polyvinylpyrrolidone. Appl. Phys. Lett. 79, 3485 2001CrossRefGoogle Scholar
26Wojtczak, W., Atanassova, P., Hampden-Smith, M.J.Duesler, E.: Synthesis and characterization of polyether adducts of barium and strontium carboxylates and their use in the formation of MTiO3 films. Inorg. Chem. 35, 6995 1996CrossRefGoogle ScholarPubMed
27Clem, P., Siegal, M.P., Voigt, J.A., Richardson, J.J.Overmyer, D.L.: Proceedings of the International Workshop on Coated Conductors for Applications (CCA2004),,2004 6Google Scholar
28Kim, Y-K., Yoo, J., Chung, K.Ko, J.: Synthesis of stable precursor solution for MOD-processing of YBCO coated conductors. Physica C 445, 574 2006CrossRefGoogle Scholar
29Yu, S., Yao, K., Shannigrahi, S.Hock, F. Tay Eng: Effects of poly(ethylene glycol) additive molecular weight on the microstructure and properties of sol-gel-derived lead zirconate titanate thin films. J. Mater. Res. 18, 737 2003CrossRefGoogle Scholar
30Kotani, Y., Matsuda, A., Kogure, T., Tatsimisago, M.Minami, T.: Effects of addition of poly(ethylene glycol) on the formation of anatase nanocrystals in SiO2–TiO2 gel films with hot water treatment. Chem. Mater. 13, 2144 2001CrossRefGoogle Scholar
31Castaño, O., Cavallaro, A., Palau, A., González, J.C., Rossell, M., Puig, T., Sandiumenge, F., Mestres, N., Piñol, S., Pomar, A.Obradors, X.: High quality YBa2Cu3O7 thin films grown by trifluoroacetates metalorganic deposition. Supercond. Sci. Technol. 16, 45 2003CrossRefGoogle Scholar
32Gazquez, J., Sandiumenge, F., Coll, M., Pomar, A., Mestres, N., Puig, T., Obradors, X., Kihn, Y., Casanove, M.J.Ballesteros, C.: Precursor evolution and nucleation mechanism of YBa2Cu3Ox films by TFA metal-organic decomposition. Chem. Mater. 18, 6211 2006CrossRefGoogle Scholar
33Meyerhofer, D.: Characteristics of resist films produced by spinning. J. Appl. Phys. 49, 3993 1978CrossRefGoogle Scholar