Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:23:19.688Z Has data issue: false hasContentIssue false

Thermodynamically stable tungsten ohmic contacts to n-In0.53Ga0.47As

Published online by Cambridge University Press:  31 January 2011

D. Y. Chen
Affiliation:
Lucent Technologies Microelectronics, 2525 North 12th Street, Reading, Pennsylvania 19612
Y. A. Chang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, 1509 University Avenue, Madison, Wisconsin 53706
D. Swenson
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931
F. R. Shepherd
Affiliation:
Nortel Technology, Ottawa, Canada K1Y 4H7
Get access

Abstract

Based on a thermodynamic assessment of the W–In–Ga–As quaternary system, the metal W was selected as a thermodynamically stable ohmic contact material to n-In0.53Ga0.47As. As-deposited contacts (on n ∼ 1.4 × 1018 cm−3 In0.53Ga0.47As) had average specific contact resistances of 7 × 10−7 Ω ·cm2 as measured using the transmission line model. The contact resistances remained unchanged after rapid thermal annealing at 400 °C for 1 min or at 600 °C for 1 min, and exhibited no degradation in electrical properties even after long-term annealing at 500 °C for 100 h. Transmission electron microscopic examination of the contacts showed no interfacial reaction. The present investigation demonstrates the power of thermodynamics in identifying stable ohmic contacts to multicomponent semiconductors.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Heime, K., InGaAs Field-Effect Transistors (Research Studies Press, Ltd., Somerset, UK, 1989).Google Scholar
2.Vandenberg, J. M., Temkin, H., Hamm, R. A., and DiGuiseppe, M. A., J. Appl. Phys. 53, 7385 (1982).Google Scholar
3.Katz, A., Dautremont-Smith, W. C., Thomas, P. M., Koszi, L. A., Lee, J. W., Riggs, V. G., Brown, R. L., Zilko, J. L., and Lahav, A., J. Appl. Phys. 65, 319 (1989).Google Scholar
4.Wada, O. and Ueda, O., in Advanced Metallizations in Microelectronics, edited by Katz, A., Murarka, S. P., and Appelbaum, A. (Mater. Res. Soc. Symp. Proc. 181, Pittsburgh, PA, 1990), p. 273.Google Scholar
5.Shih, Y. C., Murakami, M., Wilkie, E. L., and Callegari, A., J. Appl. Phys. 62, 582 (1987).CrossRefGoogle Scholar
6.Braslau, N., J. Vac. Sci. Technol. A 4, 3085 (1986).Google Scholar
7.Sands, T., Mater. Sci. Eng. B 1, 289 (1989).Google Scholar
8.Sands, T., Marshall, E. D., and Wang, L. C., J. Mater. Res. 3, 914 (1988).Google Scholar
9.Chen, D. Y., Chang, Y. A., and Swenson, D., Appl. Phys. Lett. 68 (1), 96 (1996).Google Scholar
10.Chen, W. X., Hsueh, S. C., Yu, P. K. L., and Lau, S. S., IEEE Electron. Device Lett. EDL-7 (8), 471 (1986).CrossRefGoogle Scholar
11.Wakita, A. S., Moll, N., Rosner, S. J., and Fischer-Colbrie, A., J. Vac. Sci. Technol. B 13 (5), 2092 (1995).CrossRefGoogle Scholar
12.Song, K. C., Stevanovic, D. V., Thompson, D. A., and Simmons, J. G., in Growth, Processing, and Characterization of Semiconductor Heterostructures, edited by Gumbs, G., Luryi, S., Weiss, B., and Wicks, G. W. (Mater. Res. Soc. Symp. Proc. 326, Pittsburgh, PA, 1994), p. 233.Google Scholar
13.Ansara, I., Chattilon, C., and Watson, A., in Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, edited by Petzow, G., Aldinger, F., and Effenberg, G. (VCH Verlagsgesellschaft, Weinheim, Germany, (1994), Vol 10, p. 309.Google Scholar
14.Wooley, J. C. and Smith, B. A., Proc. Phys. Soc. B London 70, 153 (1957).Google Scholar
15.Han, Q. and Schmid-Fetzer, R., J. Mater. Sci.: Mater. Electron. 4, 113 (1993).Google Scholar
16.Swenson, D., Ph.D. Thesis, University of Wisconson-Madison (1994).Google Scholar
17.Massalski, T. B., edited by Binary Alloy Phase Diagrams, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990).Google Scholar
18.Berger, H. H., Solid-State Electron. 15, 145 (1972).CrossRefGoogle Scholar
19.Katz, A., Weir, B. E., Maher, D. M., Thomas, P. M., Soler, M., Dautremont-Smith, W. C., Karlicek, R. F., Jr., Wynn, J. D., and Kimerling, L. C., Appl. Phys. Lett. 55 (21), 2220 (1989).Google Scholar
20.Han, Q. and Schmid-Fetzer, R., J. Phase Equil. 13, 588 (1992).Google Scholar