Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T20:21:53.620Z Has data issue: false hasContentIssue false

Thermodynamic instability of the YBa2Cu3O7−x phase at the 1:2:3 composition

Published online by Cambridge University Press:  31 January 2011

Fernando H. Garzon
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Ian D. Raistrick
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D.S. Ginley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
John W. Halloran
Affiliation:
CPS Superconductor Corporation, Milford, Massachusetts 01757–1746
Get access

Abstract

We have measured enthalpies of formation of YBa2Cu3O7−x, Y2BaCuO5, YBa2Cu4O8, and BaCuO2 using high precision isothermal solution calorimetry. Thermodynamic analysis of the calorimetric data indicates that YBa2Cu3O7−x at the pure-phase composition (1:2:3 cation ratio) is metastable at ≍873 K and 1 atm Po2.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Cava, R. J., Krajewski, J. J., Peck, W. F., Batlogg, B., Rupp, L. W., Fleming, R. M., James, A. C. W. P., and Marsh, P., Nature 334, 328330 (1989).CrossRefGoogle Scholar
2Morris, D. E., Asmar, N. G., Wei, J. Y. T., Nickel, J. H., Sid, R. L., and Scott, J. S., Phys. Rev. B 40, 1140611409 (1989).CrossRefGoogle Scholar
3Morris, D. E., Asmar, N. G., Nickel, J. H., Sid, R. L., Wei, J. Y. T., and Post, J. E., Physica C 159, 287294 (1989).CrossRefGoogle Scholar
4Karpinski, J., Rusiecki, S., Kaldis, E., Bucher, B., and Jilek, E., Physica C 160, 449457 (1989).CrossRefGoogle Scholar
5Karpinski, J., Rusiecki, S., Kaldis, E., Bucher, B., and Jilek, E., Physica C 161, 618625 (1989).CrossRefGoogle Scholar
6Jin, S., O'Bryan, H. M., Gallagher, P. K., Tiefel, T. H., Cava, R. J., Fastnacht, R. A., and Kammlott, G. W., Physica C 165, 415418 (1990).CrossRefGoogle Scholar
7Morss, L. R., Sonnenberger, D. C., and Thorn, R. J., Inorg. Chem. 27, 21062110 (1988).CrossRefGoogle Scholar
8Kishio, K., Hasegawa, T., Suzuki, K., Kitazawa, K., and Fueki, K., in High Temperature Superconductors: Relationships Between Properties, Structure, and Solid-State Chemistry, edited by Jorgensen, J. R., Kitazawa, K., Tarascon, J. M., Thompson, M. S., and Torrance, J. B. (Mater. Res. Soc. Symp. Proc. 156, Pittsburgh, PA, 1989), pp. 9197.Google Scholar
9Frase, K. G., Liniger, E. G., and Clarke, D. R., J. Am. Ceram. Soc. 70, C204 (1987).CrossRefGoogle Scholar
10Marsh, P., Fleming, R. M., Mandich, M. L., DeSantolo, A. M., Kwo, J., Hong, M., and Martinez-Miranda, L. J., Nature 334 (1988).CrossRefGoogle Scholar
11Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, 1979), p. 282.Google Scholar