Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T13:41:27.432Z Has data issue: false hasContentIssue false

Thermally induced structural changes in epitaxial SrZrO3 films on SrTiO3

Published online by Cambridge University Press:  31 January 2011

P. A. Langjahr
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
T. Wagner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestr. 92, 70174 Stuttgart, Germany
F. F. Lange
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

Epitaxial, continuous, approximately 40-nm-thick films of SrZrO3 on SrTiO3 substrates prepared by a chemical solution deposition method including a postdeposition heat treatment at 900–1000 °C were subjected to further heat treatments at higher temperatures (approximately 1200–1300 °C) to investigate their high temperature stability. Experimental investigations included scanning electron microscopy, atomic force microscopy, and conventional transmission electron microscopy. The investigations have demonstrated a morphological instability of the films. Concentration profiles of the cations determined by energy dispersive x-ray spectroscopy, as well as investigations by x-ray diffraction, revealed that the film islands consisted of a solid solution. As shown by high-resolution electron microscopy, the reaction between film and substrate also led to an increase in the separation distance of the misfit dislocations that were introduced during the lower temperature heat treatment to relax the lattice mismatch strain. The morphological and structural changes of the films are reported and discussed in this paper.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lange, F.F., Science 273, 903 (1996).CrossRefGoogle Scholar
2.Miller, K.T., Chan, C.J., Cain, M.G., and Lange, F.F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar
3.Seifert, A., Lange, F.F., and Speck, J.S., J. Mater. Res. 10, 680 (1995).CrossRefGoogle Scholar
4.Matthews, J.W., Phil. Mag. 8, 711 (1963).CrossRefGoogle Scholar
5.Matthews, J.W., in Single Crystal Films, edited by Francombe, M.H. and Sato, H. (Pergamon, Oxford, 1964), p. 165.Google Scholar
6.Matthews, J.W., in Epitaxial Growth, Part B, edited by Matthews, J.W., Materials Science Series (Academic Press, New York, 1975), p. 598.Google Scholar
7.Vermaak, J.S. and Merwe, J.H. v. d., Phil. Mag. 10, 785 (1964).CrossRefGoogle Scholar
8.Vermaak, J.S. and Merwe, J.H. v. d., Phil. Mag. 12, 453 (1965).CrossRefGoogle Scholar
9.Abrahams, M.S., Weisenberg, L.R., Buiocchi, C.J., and Blanc, J., J. Mat. Sci. 4, 223 (1969).CrossRefGoogle Scholar
10.Langjahr, P.A., Wagner, T., Rühle, M., and Lange, F.F., in Epitaxial Oxide Thin Films II, edited by Speck, J.S., Fork, D.K., Wolf, R.M., and Shiosaki, T. (Mater. Res. Soc. Symp. Proc. 401, Pittsburgh, PA, 1996), p. 109.Google Scholar
11.Langjahr, P.A., Lange, F.F., Wagner, T., and Rühle, M., Acta Mater. 46, 773 (1998).CrossRefGoogle Scholar
12.Henney, J.W. and Jones, J.W.S, Trans. Brit. Ceram. Soc. 68, 213 (1969).Google Scholar
13. Tracor Northern, 2551 West Beltline Highway, Middleton, WI 53562, USA.Google Scholar
14.Cliff, G. and Lorimer, G.W., J. Microscopy 103, 203 (1975).CrossRefGoogle Scholar
15.Strecker, A., Salzberger, U., and Mayer, J., Prakt. Metallographie 30, 481 (1993).Google Scholar
16.Nellist, P.D., Pennycook, S.J., Langjahr, P.A., Wagner, T., and Rühle, M. (unpublished).Google Scholar
17.Seifert, A., Vojta, A., Speck, J.S., and Lange, F.F., J. Mater. Res. 11, 1470 (1996).CrossRefGoogle Scholar
18.Zhao, L., Chien, A.T., Lange, F.F., and Speck, J.S., J. Mater. Res. 11, 1325 (1996).CrossRefGoogle Scholar
19.Hiratani, M., Imagawa, K., and Takagi, K., Jpn. J. Appl. Phys. 34, 254 (1995).CrossRefGoogle Scholar
20.Wulff, G., Z. Kristallogr. 34, 449 (1901).CrossRefGoogle Scholar
21.Winterbottom, W.L., Acta Metall. 15, 303 (1967).CrossRefGoogle Scholar
22.Ernst, F., Rečnik, A., Langjahr, P.A., Nellist, P.D., and Rühle, M., Acta Mater. 47, 183 (1999).CrossRefGoogle Scholar
23.Butler, E.P., Jain, H., and Smyth, D.M., Defect and Diffusion Forum 66–69, 1519 (1989).Google Scholar
24.Butler, E.P., Jain, J., and Smyth, D.M., J. Am. Ceram. Soc. 74, 772 (1991).CrossRefGoogle Scholar
25.Gopalan, S. and Virkar, A.V., J. Am. Ceram. Soc. 78, 993 (1995).CrossRefGoogle Scholar
26.Nix, W.D., Metallurgical Transactions A 20A, 2217 (1989).CrossRefGoogle Scholar