Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:18:11.027Z Has data issue: false hasContentIssue false

Thermal wave imaging of indented diamond coated WC

Published online by Cambridge University Press:  31 January 2011

Albert Feldman
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Photothermal radiometry has been used to obtain thermal wave images in the vicinity of indentations in WC–6% Ni coated with chemical vapor deposited (CVD) diamond. Features in the magnitude and phase of the thermal signal profile are consistent with a one-dimensional thermal wave theory that assumes (i) an air gap extending well beyond the visibly observable indented region, and (ii) a thermal resistance interface between the diamond film and the substrate over the entire coated surface. The theory allows us to estimate the air gap thickness, which decreases as the distance from the indented region increases. Air gap variations of tens of nanometers appear to be easily detectable.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ito, T., in Applications of Diamond and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier Science Publishers, Amsterdam, 1991), pp. 7783.Google Scholar
2.Yoshikawa, M., Diamond Films and Technology, 1, 1 (1991).Google Scholar
3.Nesládek, M., Vandierendonck, K., Quaeyhaegnes, C., Kerkhofs, M., and Stals, L. M., Thin Solid Films 270, 184 (1995).CrossRefGoogle Scholar
4.Drory, M. D. and Hutchison, J. W., Science 263, 1753 (1994).Google Scholar
5.Thomas, R. L., Pouch, J. J., Wong, Y. H., Favro, L. D., Kuo, P. K., and Rosencwaig, A., J. Appl. Phys. 51, 1152 (1980); Y. H. Wong, R. L. Thomas, and G. F. Hawkins, Appl. Phys. Lett. 31, 538 (1980); L. D. Favro, P. K. Kuo, J. J. Pouch, and R. L. Thomas, Appl. Phys. Lett. 36, 953 (1980); G. Busse and P. Eyerer, Appl. Phys. Lett. 43, 355 (1983).Google Scholar
6.Kanstad, S. O. and Nordal, P., Powder Technol. 22, 133 (1978); P. Nordal and S. O. Kanstad, Phys. Scripta 20, 659 (1979).CrossRefGoogle Scholar
7.Young, R. M. and Schreurs, J. J., Diamond and Related Materials 5, 134 (1996).CrossRefGoogle Scholar
8.Kuo, P. K., Sendler, E. D., Favro, L. D., and Thomas, R. L., Can. J. Phys. 64, 1168 (1986).CrossRefGoogle Scholar
9.Patel, P. M. and Almond, D. P., J. Mater. Sci. 20, 955 (1985).CrossRefGoogle Scholar
10.Feldman, A., NISTIR 5928 (1996).Google Scholar
11.Leyendecker, T., Lemmer, O., Esser, S., and Frank, M., in Applications of Diamond Films and Related Materials; Third International Conference, 1995, edited by Feldman, A., Tzeng, Y., Yarbrough, W. A., Yoshikawa, M., and Murakawa, M. (USGPO, Washington, DC, 1995), pp. 183190.Google Scholar
12.Shibuki, K., Yagi, M., and Suzuki, T., Diamond Films Technol. 3, 31 (1993).Google Scholar
13.Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
14.Graebner, J. E., Jin, S., and Kammlott, G. W., Appl. Phys. Lett. 60, 1576 (1992).Google Scholar
15.Wutz, M., Adam, H., and Walcher, W., Theory and Practice of Vacuum Technology (Frier. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1989), p. 16.Google Scholar
16.Feldman, A., Frederikse, H. P. R., and Norton, S. J., in Diamond Optics III, edited by Feldman, A. and Holly, S., SPIE Proc. 1325, 304 (1990).Google Scholar