Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T01:34:32.734Z Has data issue: false hasContentIssue false

Thermal evolution of the microstructure of nanosized LaFeO3 powders from the thermal decomposition of a heteronuclear complex, La[Fe(CN)6] · 5H2O

Published online by Cambridge University Press:  31 January 2011

Enrico Traversa
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Universita’ di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
Patrizia Nunziante
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Universita’ di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy
Masatomi Sakamoto
Affiliation:
Department of Materials and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990, Japan
Yoshihiko Sadaoka
Affiliation:
Department of Materials Science and Engineering, Faculty of Engineering, Ehime University, Matsuyama 790–77, Japan
Maria Cristina Carotta
Affiliation:
INFM, Dipartimento di Fisica, Universita’ di Ferrara, Via Paradiso 12, 44100 Ferrara, Italy
Giuliano Martinelli
Affiliation:
INFM, Dipartimento di Fisica, Universita’ di Ferrara, Via Paradiso 12, 44100 Ferrara, Italy
Get access

Abstract

The thermal decomposition of a heteronuclear complex, La[Fe(CN)6] · 5H2O, leads to the preparation of nanosized single-phase perovskite-type LaFeO3 powders. The microstructural evolution of LaFeO3 with the temperature has been studied by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The product of the decomposition at 500 °C consists of nanoporous grains which have the morphology of the complex, but diffracting as a monocrystal of LaFeO3. At the higher temperatures, the nanosized particles start to separate from each other, still keeping the shape of the complex grains and forming soft agglomerates. The formation of LaFeO3 from the complex at low temperatures is facilitated by the formation of an orthorhombic transition phase.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wachsman, E. D., in Progress in Ceramic Basic Science: Challenge Toward the 21st Century (The Ceramic Society of Japan, Tokyo, Japan, 1996), p. 131.Google Scholar
2.Stevenson, J. W., Armstrong, T. R., Carneim, R. D., Pederson, L. R., and Weber, W. J., J. Electrochem. Soc. 143, 2722 (1996).Google Scholar
3.Obayashi, H. and Kudo, T., Nippon Kagaku Kaishi, 1568 (1980).Google Scholar
4.Li, W. B., Yoneyama, H., and Tamura, H., Nippon Kagaku Kaishi, 761 (1982).Google Scholar
5.Takahashi, Y. and Taguchi, H., J. Mater. Sci. Lett. 3, 251 (1984).Google Scholar
6.Arakawa, T., Kurachi, H., and Shiokawa, J., J. Mater. Sci. 4, 1207 (1985).Google Scholar
7.Lukaszewicz, J. P., Sensors and Actuators B 4, 227 (1991).Google Scholar
8.Lu, G., Xin, Y., Quan, B., Sun, L., and Yan, W., Jilin Daxue Ziran Kexue Xuebao 4, 69 (1992).Google Scholar
9.Mitsuoka, M., Otofuji, A., and Arakawa, T., Sensors and Actuators B 9, 205 (1992).Google Scholar
10.Zhang, J., Lu, Y., Wu, G., and Li, B., Wuji Cailiao Xuebao 7, 37 (1992).Google Scholar
11.Post, M. L., Sanders, B. W., and Kennepohl, P., Sensors and Actuators B 13, 272 (1993).Google Scholar
12.Matsuura, Y., Matsushima, S., Sakamoto, M., and Sadaoka, Y., J. Mater. Chem. 3, 767 (1993).Google Scholar
13.Traversa, E., Matsushima, S., Okada, G., Sadaoka, Y., Sakai, Y., and Watanabe, K., Sensors and Actuators B 25, 661 (1995).Google Scholar
14.Kakihana, M., J. Sol-Gel Sci. Technol. 6, 7 (1996).Google Scholar
15.Chemical Processing of Ceramics, edited by Lee, B. I. and Pope, E. J. (Marcel Dekker, New York, 1994).Google Scholar
16.Yoshimura, M., Song, S. T., and Somiya, S., Yogyo Kyokaishi 90, 91 (1982).Google Scholar
17.Zhang, H. M., Teraoka, Y., and Yamazoe, N., Chem. Lett., 665 (1987).Google Scholar
18.Yan, W., Sun, L., Liu, M., and Qin, Y., Yibiao Cailiao 21, 271 (1990).Google Scholar
19.Furusaki, A., Konno, H., and Furuichi, R., Nippon Kagaku Kaishi, 612 (1992).Google Scholar
20.Chandler, C. D., Roger, C., and Hampden-Smith, M. J., Chem. Rev. 93, 1205 (1993).Google Scholar
21.Morelli, M. R. and Brook, R. J., in Electroceramics IV, edited by Waser, R., Hoffmann, S., Bonnenberg, D., and Hoffmann, Ch. (Augustinus Buchhandlung, Aachen, Germany, 1994), p. 1263.Google Scholar
22.Gallagher, P. K., Mater. Res. Bull. 3, 225 (1968).Google Scholar
23.Sakamoto, M., Komoto, Y., Hojo, H., and Ishimori, T., Nippon Kagaku Kaishi, 887 (1990).Google Scholar
24. S. Nakayama and Sakamoto, M., J. Ceram. Soc. Jpn. 100, 342 (1992).Google Scholar
25.Sakamoto, M., Matsuki, K., Ohsumi, R., Nakayama, Y., Sadaoka, Y., Nakayama, S., Matsumoto, N., and Okawa, H., J. Ceram. Soc. Jpn. 100, 1211 (1992).Google Scholar
26.Sadaoka, Y., Watanabe, K., Sakai, Y., and Sakamoto, M., J. Ceram. Soc. Jpn. 103, 519 (1995).Google Scholar
27.Sadaoka, Y., Watanabe, K., Sakai, Y., and Sakamoto, M., J. Alloys and Compounds 224, 194 (1995).Google Scholar
28.Sadaoka, Y., Traversa, E., and Sakamoto, M., Chem. Lett., 177 (1996).Google Scholar
29.Sadaoka, Y., Traversa, E., and Sakamoto, M., J. Alloys and Compounds 240, 51 (1996).Google Scholar
30.Sadaoka, Y., Traversa, E., and Sakamoto, M., J. Mater. Chem. 6, 1355 (1996).Google Scholar
31.Traversa, E., Nunziante, P., Sakamoto, M., Watanabe, K., Sadaoka, Y., and Sakai, Y., Chem. Lett., 189 (1995).Google Scholar
32.Traversa, E., Nunziante, P., Sakamoto, M., and Sadaoka, Y., in Fourth Euro-Ceramics, Vol. 5: Electroceramics, edited by Gusmano, G. and Traversa, E. (Faenza Editrice, Faenza, Italy, 1995), p. 17.Google Scholar
33.Sadaoka, Y., Traversa, E., Nunziante, P., and Sakamoto, M., J. Alloys and Compounds 261, 182 (1997).Google Scholar
34.Nakayama, S., Sakamoto, M., Matsuki, K., Okimura, Y., Ohsumi, R., Nakayama, Y., and Sadaoka, Y., Chem. Lett., 2145 (1992).Google Scholar
35.Traversa, E., Sakamoto, M., and Sadaoka, Y., J. Am. Ceram. Soc. 79, 1401 (1996).Google Scholar
36.Hulliger, F., Landolt, M., and Vetsch, H., J. Solid State Chem. 18, 283 (1976).Google Scholar
37.Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (John Wiley, New York, 1986), p. 252.Google Scholar
38.Watanabe, K., M.En. Thesis, Faculty of Engineering, Ehime University (1995).Google Scholar