Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:38:45.925Z Has data issue: false hasContentIssue false

Thermal decomposition and fractal properties of sputter-deposited platinum oxide thin films

Published online by Cambridge University Press:  20 December 2011

Adolfo Mosquera
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
David Horwat
Affiliation:
Institut Jean Lamour, Ecole des Mines de Nancy, 54042 Nancy, France
Luis Vazquez
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
Alejandro Gutiérrez
Affiliation:
Departamento de Física Aplicada and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
Alexei Erko
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II, 12489 Berlin, Germany
André Anders
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720
Joakim Andersson
Affiliation:
The Angstrom Laboratory, Uppsala University, S-75121 Uppsala, Sweden
Jose L. Endrino*
Affiliation:
Abengoa Research, Campus Palmas Altas, E-41014 Sevilla, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Porous platinum thin films were prepared by thermal decomposition at temperatures from 25 to 675 °C of platinum oxide films deposited by a pulsed reactive sputtering technique. The samples’ chemistry and structure were investigated by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and x-ray absorption near edge structure (XANES), showing that the decomposition of the oxide begins as low as 400 °C and follows a sigmoidal trend with increasing annealing temperature. In the XRD spectra, only an amorphous-like signature was observed for temperatures below 575 °C, while Pt 4f XPS showed that the deposited oxide was a mixture of PtO2 and PtO. Pt-L3 edge XANES and Pt 4f XPS spectra showed that the Pt concentration and electronic structure are predominant for temperatures equal to or above 575 °C. The morphologies of the films were investigated by the area-perimeter method from atomic force microscopy and scanning electron microscopy (SEM) images, indicating that the surfaces exhibit a combination of Euclidian and fractal characteristics. Moreover, the thermal evolution of these characteristics indicates the agglomeration of the grains in the film as observed by SEM.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Katayama, A.: Electrooxidation of methanol on a platinum-tin oxide catalyst. J. Phys. Chem. 84(4), 376 (1980).CrossRefGoogle Scholar
2.Matolín, V., Matolínová, I., Václavu, M., Khalakhan, I., Vorokhta, M., Fiala, R., Pis, I., Sofer, Z., Poltierová-Vejpravová, J., Mori, T., Potin, V., Yoshikawa, H., Ueda, S., and Kobayashi, K.: Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering. Langmuir 26(15), 12824 (2010).CrossRefGoogle ScholarPubMed
3.Kuribayashi, K. and Kitamura, S.: Preparation of Pt-PtOx thin films as electrode for memory capacitors. Thin Solid Films 400(1–2), 160 (2001).CrossRefGoogle Scholar
4.Yamazaki, D. and Ueda, T.: Differential platinum thin film hydrogen gas sensor fabricated by MEMS techniques. IEEJ Trans. Sens. Micromachines 130(3), 65 (2010).CrossRefGoogle Scholar
5.Rajagopal, A., Walavalkar, S., Chen, S., Guo, L., Gwinn, T., and Scherer, A.: Microscaled and nanoscaled platinum sensors. Appl. Phys. Lett. 97(13), 133109 (2010).CrossRefGoogle Scholar
6.Maya, L., Brown, G.M., and Thundat, T.: Porous platinum electrodes derived from the reduction of sputtered platinum dioxide films. J. Appl. Electrochem. 29(7), 881 (1999).CrossRefGoogle Scholar
7.Mills, A.: Porous platinum morphologies: Platinised, sponge and black. Platinum Met. Rev. 51(1), 52 (2007).CrossRefGoogle Scholar
8.Dmitrenko, V.E., Trofimova, A.A., Lavrent’ev, M.I., Novikov, G.F., and Artem’eva, M.B.: Porous platinum electrodes. Powder Metall. Met. Ceram. 10(9), 751 (1972).CrossRefGoogle Scholar
9.Krishnamurthy, B. and Deepalochani, S.: Performance of platinum black and supported platinum catalysts in a direct methanol fuel cell. Int. J. Electrochem. Sci. 4(3), 386 (2009).CrossRefGoogle Scholar
10.Seo, H.K., Park, D.J., and Park, J.Y.: Fabrication and characterization of platinum black and mesoporous platinum electrodes for in-vivo and continuously monitoring electrochemical sensor applications. Thin Solid Films 516(16), 5227 (2008).CrossRefGoogle Scholar
11.Iwai, Y., Nakagawa, K., Miura, N., Matsumoto, S., Nakano, R., and Matsumoto, H.: Effect of electrical properties of platinum palladium oxide thin films on the optical properties. J. Vac. Soc. Jpn. 52(3), 163 (2009).CrossRefGoogle Scholar
12.Andreas, H.A., Kung, S.K.Y., McLeod, E.J., Young, J.L., and Birss, V.I.: Optimization of synthesis parameters employed during Pt nanoparticle formation by in situ reduction. J. Phys. Chem. C 111(36), 13321 (2007).CrossRefGoogle Scholar
13.Dutta, I., Carpenter, M.K., Balogh, M.P., Ziegelbauer, J.M., Moylan, T.E., Atwan, M.H., and Irish, N.P.: Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J. Phys. Chem. C 114(39), 16309 (2010).CrossRefGoogle ScholarPubMed
14.Kikuchi, T., Takahashi, H., and Maruko, T.: Fabrication of three-dimensional platinum microstructures with laser irradiation and electrochemical technique. Electrochim. Acta 52(7), 2352 (2007).CrossRefGoogle Scholar
15.Saenger, K.L., Cabral, C. Jr., Lavoie, C., and Rossnagel, S.M.: Thermal stability and oxygen-loss characteristics of Pt(O) films prepared by reactive sputtering. J. Appl. Phys. 86(11), 6084 (1999).CrossRefGoogle Scholar
16.Maya, L., Riester, L., Thundat, T., and Yust, C.S.: Characterization of sputtered amorphous platinum dioxide films. J. Appl. Phys. 84(11), 6382 (1998).CrossRefGoogle Scholar
17.Maya, L., Hagaman, E.W., Williams, R.K., Wang, X.D., Del Cul, G.D., and Fiedor, J.N.: Carbon in α-platinum dioxide. J. Phys. Chem. B 102(11), 1951 (1998).CrossRefGoogle Scholar
18.Horwat, D., Zakharov, D.I., Endrino, J.L., Soldera, F., Anders, A., Migot, S., Karoum, R., Vernoux, Ph., and Pierson, J.F.: Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition. Surf. Coat. Technol. 205(Suppl 2), S171 (2011).CrossRefGoogle Scholar
19.Lapisardi, G., Urfels, L., Gélin, P., Primet, M., Kaddouri, A., Garbowski, E., Toppi, S., and Tena, E.: Superior catalytic behavior of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature. Catal. Today 117(4), 564 (2006).CrossRefGoogle Scholar
20.Yamamoto, H. and Uchida, H.: Oxidation of methane over Pt and Pd supported on alumina in lean-burn natural-gas engine exhaust. Catal. Today 45(1–4), 147 (1998).CrossRefGoogle Scholar
21.García-Ayuso, G., Salvarezza, R., Martínez-Duart, J.M., Sánchez, O., and Vázquez, L.: Relationship between the micro structure and the water permeability of transparent gas barrier coatings. Surf. Coat. Technol. 100101(1–3), 459 (1998).CrossRefGoogle Scholar
22.Sun, X., Fu, Z., and Wu, Z.: Fractal processing of AFM images of rough ZnO films. Mater. Charact. 48(2–3), 169 (2002).CrossRefGoogle Scholar
23.Cruz, A., Vázquez, L., Vález, M., and Pérez-Gil, J., Effect of pulmonary surfactant protein SP-B on the micro- and nanostructure of phospholipid films. Biophys. J. 86(1 Pt I), 308 (2004).CrossRefGoogle ScholarPubMed
24.Mandelbrot, B.: How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636 (1967).CrossRefGoogle Scholar
25.Barabási, A.B. and Stanley, H.E.: Fractal Concepts in Surface Growth, 1st ed. (Cambridge University Press, New York, 1995).CrossRefGoogle Scholar
26.Sawant, P.D. and Nicolau, D.V.: Nano-topographic evaluation of highly disordered fractal-like structures of immobilized oligonucleotides using AFM. Mater. Sci. Eng., B 132(1–2), 147 (2006).CrossRefGoogle Scholar
27.Mandelbrot, B.B., Passoja, D.E., and Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature 308(5961), 721 (1984).CrossRefGoogle Scholar
28.Pfeifer, P. and Ober, M.: The Fractal Approach to Hetereogeneous Chemistry (Wiley, New York, 1984).Google Scholar
29.McBride, J.R., Graham, G.W., Peters, C.R., and Weber, W.H.: Growth and characterization of reactively sputtered thin-film platinum oxides. J. Appl. Phys. 69(3), 1596 (1991).CrossRefGoogle Scholar
30.Hecq, M., Hecq, A., Delrue, J.P., and Robert, T.: Sputtering deposition, XPS and x-ray diffraction characterization of oxygen-platinum compounds. J. Less-Common Met. 64(2), 25 (1979).CrossRefGoogle Scholar
31.Chen, Y.C., Sun, Y.M., Yu, S.Y., Hsiung, C.P., Gan, J.Y., and Kou, C.S.: Characterization of Pt oxide thin film fabricated by plasma immersion ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 237(1–2), 296 (2005).CrossRefGoogle Scholar
32.Nagai, Y., Hirabayashi, T., Dohmae, K., Takagi, N., Minami, T., Shinjoh, H., and Matsumoto, S.: Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. J. Catal. 242(1), 103 (2006).CrossRefGoogle Scholar
33.Hlil, E.K., Baudoing-Savois, R., Moraweck, B., and Renouprez, A.J.: X-ray absorption edges in platinum-based alloys. 2. Influence of ordering and of the nature of the second metal. J. Phys. Chem. 100(8), 3102 (1996).CrossRefGoogle Scholar
34.Westra, K.L., Mitchell, A.W., and Thomson, D.J.: Tip artifacts in atomic force microscope imaging of thin film surfaces. J. Appl. Phys. 74(5), 3608 (1993).CrossRefGoogle Scholar
35.Grütter, P., Zimmermann-Edling, W., and Brodbeck, D.: Tip artifacts of microfabricated force sensors for atomic force microscopy. Appl. Phys. Lett. 60(22), 2741 (1992).CrossRefGoogle Scholar
36.Stauffer, D. and Aharony, A.: Introduction to Percolation Theory (Taylor & Francis, London, 1992).Google Scholar